Skip to main content
Log in

Preparation and properties of metal-containing polyamide hybrid composites via reactive microencapsulation

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyamide 6 microcapsules (PAMC) loaded with 2–8 wt% of Cu, Zn, or Fe and up to 30 wt% of Al particles are synthesized via activated anionic polymerization (AAP) of ε-caprolactam in suspension performed in the presence of the respective micro- or nanosized loads. The high-molecular weight porous PAMC are with typical diameters of 10–90 µm depending on the size of the metal filler particles. The latter are entrapped in the core of PAMC as proven by microscopy methods. The melt processing of the loaded microcapsules produced PA6/metal hybrid thermoplastic composites with homogeneous distribution of the loads without any functionalization. The crystalline structure of all PAMC and molded composites is studied by thermal and microfocus X-ray diffraction methods suggesting polymorph changes during the transition from PAMC to molded plates. Mechanical tests in tension showed that transforming Al-loaded PAMC into composites produces polyamide hybrids with higher modulus and strength at break. Measuring the conductivity and dielectric properties of the composites in linear and cyclic modes showed that 30 wt% of Al can change significantly the permittivity of the hybrid composites without increasing the conductivity of the PA6 matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Fig. 14

Similar content being viewed by others

References

  1. Carotenuto G, Nicolais L, Martorana B, Perlo P (2005) Metal-polymer nanocomposite synthesis: novel in-situ and ex-situ approaches. In: Nicolais L, Carotenuto G (eds) Metal-polymer nanocomposites. Wiley, Hoboken, p 155

    Google Scholar 

  2. Song HM, Kim YJ, Park JH (2008) Three-dimensional hierarchically organized magnetic nanoparticle polymer composites: achievement of monodispersity and enhanced tensile strength. J Phys Chem C 112:5397–5404

    Article  Google Scholar 

  3. Liang Y, Xia X, Luo Y, Jia Z (2007) Synthesis and performances of Fe2O3/PA6 nanocomposite fiber. Mater Lett 61:3269–3272

    Article  Google Scholar 

  4. Mallakpour S, Zeraatpisheh F (2012) Preparation and morphology distinguishing of novel ZnO ultrafine particle filled nanocomposites containing new poly(amide-imide) via ultrasonic process. J Polym Res 19:9927–9936

    Article  Google Scholar 

  5. Laachachi A, Cochez M, Ferriol M, Lopez Cuesta JM, Leroy E (2005) Influence of TiO2 and Fe2O3 fillers on the thermal properties of polymethyl methacrylate. Mater Lett 59:36–39

    Article  Google Scholar 

  6. Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465

    Article  Google Scholar 

  7. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110

    Article  Google Scholar 

  8. Chu J-W, Shim I-W (1993) The chemistry of ruthenium in cellulose acetate: reactions with CO, H2, O2 and H2O. J Mol Catal 78:189–199

    Article  Google Scholar 

  9. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2008) PEDOT-Au nanocomposite film for electrochemical sensing. Mater Lett 62:571–573

    Article  Google Scholar 

  10. François NJ, Allo S, Jacobo SE, Daraio ME (2007) Composites of polymeric gels and magnetic nanoparticles: preparation and drug release behavior. J Appl Polym Sci 105:647–655

    Article  Google Scholar 

  11. Carotenuto G, Martorana B, Perlo P, Nicolais L (2003) A universal method for the synthesis of metal and metal sulfide clusters embedded in polymer matrices. J Mater Chem 13:2927–2930

    Article  Google Scholar 

  12. Reboud V, Kehagias N, Striccoli M, Placido T, Panniello A et al (2007) Photo-luminescence enhancement in metallic nanocomposite printable polymer. J Vac Sci Technol B 25:2642–2644

    Article  Google Scholar 

  13. Zhou W, Wang Z, Dong L, Sui X, Chen Q (2015) Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Compos Part A 79:183–191

    Article  Google Scholar 

  14. Carotenuto G, Pepe IG, Davino D, Martorana B, Perlo P et al (2006) Transparent-ferromagnetic thermoplastic polymers for optical components. Microw Opt Technol Lett 48:2505–2508

    Article  Google Scholar 

  15. Domènech B, Ziegler KK, Carrillo F, Muñoz M, Muraviev DN, Macanás J (2013) Development of novel catalytically active polymer-metal-nanocomposites based on activated foams and textile fibers. Nanoscale Res Lett 8:238–245

    Article  Google Scholar 

  16. Kruenate J, Tongpool R, Panyathanmaporn T (2004) Optical and mechanical properties of polypropylene modified by metal oxides. Surf Interface Anal 36:1044–1047

    Article  Google Scholar 

  17. Wang Z, Wang X, Zhang Z (2009) Nucleating activation and spherical crystals morphology of LLDPE/LDPE/TiO2 nano composites prepared by non-isothermal crystallization. J Dispers Sci Technol 30:1231–1236

    Article  Google Scholar 

  18. Xu Q, Li X, Zhang S, Hao Y, Zhang Z (2013) Copper nanowire/PA6 composites prepared by in situ polymerization and its properties. J Polym Res 20:257–263

    Article  Google Scholar 

  19. Mohamed M, El-Maghraby A, El-Latif MA, Farag H, Kalaitzidou K (2013) Fe-Ni alloy/polyamide 6 nanocomposites: effect of nanocrystalline metal particles on the mechanical and physical properties of the polymer. J Polym Res 20:137–146

    Article  Google Scholar 

  20. Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116

    Article  Google Scholar 

  21. Damm C, Münstedt H, Rösch A (2007) Long-term antimicrobial PA6/Ag-nanocomposites. J Mater Sci 42:6067–6073. doi:10.1007/s10853-006-1158-5

    Article  Google Scholar 

  22. Xu Q, Li X, Zhang Z (2015) Preparation of copper nanoparticle-improved polyamide 6 composites by an in situ solution route with cupric oxide as the metallic copper source and investigation of their properties. New J Chem 39:3015–3020

    Article  Google Scholar 

  23. Komeily-Nia Z, Montazer M, Latifi M (2013) Synthesis of nano copper/nylon composite using ascorbic acid and CTAB. Colloids Surf A 439:167–175

    Article  Google Scholar 

  24. Lonjon A, Caffrey I, Carponcin D, Dantras E, Lacabanne C (2013) High electrically conductive composites of Polyamide 11 filled with silver nanowires: nanocomposites processing, mechanical and electrical analysis. J Non-Cryst Solids 376:199–204

    Article  Google Scholar 

  25. Dencheva N, Denchev Z, Lanceros-Méndez S, Ezquerra TA (2016) One-step in situ synthesis of polyamide microcapsules with inorganic payload and their transformation into responsive thermoplastic composite materials. Macromol Mat Eng 301:119–124

    Article  Google Scholar 

  26. Rusu Gh, Ueda K, Rusu E, Rusu M (2001) Polyamides from lactams by centrifugal molding via anionic ring-opening polymerization. Polymer 42:5669–5678

    Article  Google Scholar 

  27. Roda J (2009) Polyamides. In: Dubois P, Coulembier O, Raquez JM (eds) Handbook of ring-opening polymerization. Wiley-VCH, Wincheim, pp 165–196

    Chapter  Google Scholar 

  28. Dan F, Vasiliu-Oprea C (1998) Anionic polymerization of caprolactam in organic media—morphological aspects. Colloid Polym Sci 276:483–495

    Article  Google Scholar 

  29. Vasiliu-Oprea C, Dan F (1997) On the relation between synthesis parameters and morphology of anionic polycaproamide obtained in organic media. II. Influence of the Na[O(CH2)2OCH3]2AlH2/aliphatic diisocyanates catalytic systems. J Appl Polym Sci 64:2575–2583

    Article  Google Scholar 

  30. Dencheva N, Denchev Z, Pouzada AS, Sampaio AS, Rocha AM (2013) Structure–properties relationship in single polymer composites based on polyamide 6 pre- pared by in-mold anionic polymerization. J Mater Sci 48:7260–7273. doi:10.1007/s10853-013-7546-8

    Article  Google Scholar 

  31. Fornes TD, Paul DR (2003) Crystallization behavior of nylon 6 nanocomposites. Polymer 44:3945–3961

    Article  Google Scholar 

  32. Dencheva N, Stribeck A, Denchev Z (2016) Nanostructure development in multicomponent polymer systems and its characterization by X-ray scattering. Eur Polym J 81:447–469

    Article  Google Scholar 

  33. Dencheva N, Nunes T, Oliveira MJ, Denchev Z (2005) Microfibrillar composites based on polyamide/polyethylene blends. 1. Structure investigations in oriented and isotropic polyamide 6. Polymer 46:887–901

    Article  Google Scholar 

Download references

Acknowledgements

This article is a result of the project TSSiPRO—NORTE-01-0145-FEDER-000015—supported by the regional operational program NORTE 2020, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund. The authors also thank for the financial support of the Portuguese Foundation for Science and Technology (FCT) in the frames of the strategic projects LA25/2013–2014, UID/CTM/50025/2013, and UID/FIS/04650/2013. Partial financing by PTDC/EEI-SII/5582/2014 and PTDC/CTM-ENE/5387/2014 is also gratefully acknowledged. ZZD appreciates the support of PETRA III (MiNaXS beamline) of the German Synchrotron Facility DESY, Germany (Project No. I-20130095 EC). Financial support from the Basque Government Industry Department under the ELKARTEK Program is acknowledged by SLM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatan Denchev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brêda, C., Dencheva, N., Lanceros-Méndez, S. et al. Preparation and properties of metal-containing polyamide hybrid composites via reactive microencapsulation. J Mater Sci 51, 10534–10554 (2016). https://doi.org/10.1007/s10853-016-0274-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0274-0

Keywords

Navigation