Skip to main content
Log in

Electrical properties of NiFe2O4 epitaxial ultra-thin films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Epitaxial thin films of NiFe2O4 are fabricated by pulsed laser deposition on SrTiO3 substrate. Symmetrical capacitor-like structures are formed using SrRuO3 as bottom and top electrodes. Electrical characterizations, including current–voltage, capacitance–voltage and capacitance–frequency measurement, reveal a hysteresis-like behaviour for current and capacitance as function of voltage. This could be assigned to a resistive and/or capacitive switching. A “degradation” process takes place after repeated voltage cycling or after heating the sample to 400 K, leading to the stabilization of different resistive states. These features can be related to the changes observed in the capacitance–frequency characteristics, suggesting the presence of a relaxation mechanism at low frequencies, and can be associated with the presence of a deep donor-type level in the band-gap of the NiFe2O4 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Hu J-M, Chen L-Q, Nan C-W (2016) Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv Mater 28:15–39

    Article  Google Scholar 

  2. Huang W, Yang S, Li X (2015) Multiferroic heterostructures and tunneling junctions. J Materiomics 1:263–284

    Article  Google Scholar 

  3. Mukherjee D, Hordagoda M (2014) Enhanced magnetism and ferroelectricity in epitaxial Pb(Zr0.52Ti0.48)O3/CoFe2O4/La0.7Sr0.3MnO3 multiferroic heterostructures grown using dual-laser ablation technique. J Appl Phys 115:17D707(1)–17D707(3)

    Google Scholar 

  4. Liu M, Obi O, Cai Z, Lou J, Yang G, Ziemer KS, Sun NX (2010) Electrical tuning of magnetism in Fe3O4/PZN–PT multiferroic heterostructures derived by reactive magnetron sputtering. J Appl Phys 107:073916(1)–073916(6)

    Google Scholar 

  5. Liu M, Obi O, Lou J, Stoute S, Cai Z, Ziemer K, Sun NX (2009) Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition. J Phys Appl Phys 42:045007(1)–045007(5)

    Google Scholar 

  6. Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer KS, Harris VG, Sun NX (2009) Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater 19:1826–1831

    Article  Google Scholar 

  7. Chang K-S, Aronova M, Lin C-L, Murakami M, Yu M-H, Hattrick-Simpers J, Famodu O, Lee S, Ramesh R, Wuttig M, Takeuchi I, Gao C, Bendersky L (2004) Exploration of artificial multiferroic thin-film heterostructures using composition spreads. Appl Phys Lett 84:3091–3093

    Article  Google Scholar 

  8. Srinivasan G (2010) Magnetoelectric composites. Annu Rev Mater Res 40:153–178

    Article  Google Scholar 

  9. Sun NX, Srinivasan G (2012) Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 02:1240004(1)–1240004(46)

    Article  Google Scholar 

  10. Ortega N, Kumar A, Bhattacharya P, Majumder SB, Katiyar RS (2008) Impedance spectroscopy of multiferroic PbZr x Ti1−x O3/CoFe2O4 thin films. Phys Rev B 77:014111(1)–014111(10)

    Article  Google Scholar 

  11. Dawber M, Rabe KM, Scott JF (2005) Physics of thin-film ferroelectric oxides. Rev Mod Phys 77:1083–1130

    Article  Google Scholar 

  12. Ramesh R (ed) (2013) Thin film ferroelectric materials and devices. Springer, New York

    Google Scholar 

  13. Greenwald S, Pickart SJ, Grannis FH (1954) Cation distribution and g factors of certain spinels containing Ni2+, Mn2+, Co2+, Al3+, Ga3+, and Fe3+. J Chem Phys 22:1597–1600

    Article  Google Scholar 

  14. Sze SM (1998) Physics of semiconductor devices, 2nd edn. Wiley, New York

    Google Scholar 

  15. Mönch W (1994) Metal-semiconductor contacts: electronic properties. Surf Sci 299–300:928–944

    Article  Google Scholar 

  16. Anjum S, Salman A, Rafique MS, Zia R, Riaz S, Iqbal H (2015) Investigation of magnetic anisotropy in cobalt chromium (CoCr0.5Fe1.5O4) spinel ferrite thin films. J Supercond Nov Magn 28:3147–3156

    Article  Google Scholar 

  17. Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36

    Article  Google Scholar 

  18. Hu W, Zou L, Chen R, Xie W, Chen X, Qin N, Li S, Yang G, Bao D (2014) Resistive switching properties and physical mechanism of cobalt ferrite thin films. Appl Phys Lett 104:143502(1)–143502(5)

    Google Scholar 

  19. Wang Q, Zhu Y, Liu X, Zhao M, Wei M, Zhang F, Zhang Y, Sun B, Li M (2015) Study of resistive switching and magnetism modulation in the Pt/CoFe2O4/Nb:SrTiO3 heterostructures. Appl Phys Lett 107:063502(1)–063502(4)

    Google Scholar 

  20. Hu W, Qin N, Wu G, Lin Y, Li S, Bao D (2012) Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J Am Chem Soc 134:14658–14661

    Article  Google Scholar 

  21. Kalon G, Shin YJ, Truong VG, Kalitsov A, Yang H (2011) The role of charge traps in inducing hysteresis: capacitance–voltage measurements on top gated bilayer graphene. Appl Phys Lett 99:083109(1)–083109(3)

    Article  Google Scholar 

  22. Wang JC, Chiao SH, Lee CL, Lei TF, Lin YM, Wang MF, Chen SC, Yu CH, Liang MS (2002) A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film. J Appl Phys 92:3936–3940

    Article  Google Scholar 

  23. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press Limited, London

    Google Scholar 

  24. Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502(1)–076502(31)

    Article  Google Scholar 

  25. Shuai Y, Zhou S, Bürger D, Helm M, Schmidt H (2011) Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt. J Appl Phys 109:124117(1)–124117(4)

    Google Scholar 

  26. Lee MH, Kim KM, Kim GH, Seok JY, Song SJ, Yoon JH, Hwang CS (2010) Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy. Appl Phys Lett 96:152909(1)–152909(3)

    Google Scholar 

  27. Chen C, Pan F, Wang ZS, Yang J, Zeng F (2012) Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J Appl Phys 111:013702(1)–013702(6)

    Google Scholar 

  28. Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840

    Article  Google Scholar 

  29. Gao B, Sun B, Zhang H, Liu L, Liu X, Han R, Kang J, Yu B (2009) Unified Physical Model of bipolar oxide-based resistive switching memory. IEEE Electron Device Lett 30:1326–1328

    Article  Google Scholar 

  30. Kim KM, Choi BJ, Lee MH, Kim GH, Song SJ, Seok JY, Yoon JH, Han S, Hwang CS (2011) A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 22:254010(1)–254010(8)

    Google Scholar 

  31. Zhou P, Yin M, Wan HJ, Lu HB, Tang TA, Lin YY (2009) Role of TaON interface for Cu x O resistive switching memory based on a combined model. Appl Phys Lett 94:053510(1)–053510(3)

    Google Scholar 

  32. Zafar S, Jones RE, Jiang B, White B, Chu P, Taylor D, Gillespie S (1998) Oxygen vacancy mobility determined from current measurements in thin Ba0.5Sr0.5TiO3 films. Appl Phys Lett 73:175–177

    Article  Google Scholar 

  33. Pantelides ST (1978) The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys 50:797–858

    Article  Google Scholar 

  34. Johnson MT, Kotula PG, Carter CB (1999) Growth of nickel ferrite thin films using pulsed-laser deposition. J Cryst Growth 206:299–307

    Article  Google Scholar 

  35. Summerfelt SR, Carter CB (1992) Interaction between dislocations and NiFe2O4 precipitates in a NiO matrix. Acta Metall Mater 40:2805–2812

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the following projects: Idea-Complex Research Grant PN-II-ID-PCCE-2011-2-0006 (Contract No. 3/2012, Romanian Ministry of Education-Executive Unit for Funding High Education, Research, Development and Innovation, MEN-UEFISCDI); FP7 Project IFOX; Core Program of NIMP (PN16-480102). The authors acknowledge also the assistance of Dr. Iuliana Pasuk for XRD characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Boni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boni, G.A., Hrib, L., Porter, S.B. et al. Electrical properties of NiFe2O4 epitaxial ultra-thin films. J Mater Sci 52, 793–803 (2017). https://doi.org/10.1007/s10853-016-0376-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0376-8

Keywords

Navigation