Skip to main content

Advertisement

Log in

Cytotoxicity studies of membranes made with cellulose nanofibers from fique macrofibers

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We report on the fabrication of cellulose nanofibers from Fique (Furcraea andina), in which raw macrofibers were chemically treated and then ground. Bleaching was effective in removing lignin from the raw fibers, and this was confirmed with distinct techniques, viz. X-ray diffraction, FTIR spectroscopy, thermogravimetric analysis, and the estimation of the kappa number. From scanning electron microscopy and transmission electron microscopy images, the nanofibers were seen to form a network with 85% of nanofibers having diameters smaller than 50 nm, while their length was hundreds of nanometers. The tensile strength of membranes made with the nanofibers was 166 MPa. These membranes had no cytotoxicity in in vitro indirect tests analyzed qualitatively and quantitatively. Indeed, cell viability was higher for the nanofibers than the negative control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Dufresne A (2006) Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol 6(2):322–330

    Article  Google Scholar 

  2. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    Article  Google Scholar 

  3. Atalla RH (1990) The structures of cellulose. In: MRS Proceedings, Cambridge Univ Press, p 89

  4. Trindade WG, de Paiva JMF, Leão AL, Frollini E (2008) Ionized-air-treated Curaua fibers as reinforcement for phenolic matrices. Macromol Mater Eng 293(6):521–528

    Article  Google Scholar 

  5. Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan E, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86(4):1790–1798

    Article  Google Scholar 

  6. Dufresne A, Vignon MR (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31(8):2693–2696

    Article  Google Scholar 

  7. Nakagaito A, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80(1):155–159

    Article  Google Scholar 

  8. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Article  Google Scholar 

  9. Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238

    Article  Google Scholar 

  10. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180

    Article  Google Scholar 

  11. Penttilä PA, Várnai A, Pere J, Tammelin T, Salmén L, Siika-aho M, Viikari L, Serimaa R (2013) Xylan as limiting factor in enzymatic hydrolysis of nanocellulose. Bioresour Technol 129:135–141

    Article  Google Scholar 

  12. Iwamoto S, Nakagaito A, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89(2):461–466

    Article  Google Scholar 

  13. Panthapulakkal S, Sain M (2012) Preparation and characterization of cellulose nanofibril films from wood fibre and their thermoplastic polycarbonate composites. Int J Polym Sci 2012:6. doi:10.1155/2012/381342

    Article  Google Scholar 

  14. Hoyos CG, Alvarez VA, Rojo PG, Vázquez A (2012) Fique fibers: enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers Polym 13(5):632–640

    Article  Google Scholar 

  15. Ghali L, Msahli S, Zidi M, Sakli F (2009) Effect of pre-treatment of Luffa fibres on the structural properties. Mater Lett 63(1):61–63

    Article  Google Scholar 

  16. Mân Vu TH, Pakkanen H, Alén R (2004) Delignification of bamboo (Bambusa procera acher): part 1 kraft pulping and the subsequent oxygen delignification to pulp with a low kappa number. Ind Crops Prod 19(1):49–57

    Article  Google Scholar 

  17. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  Google Scholar 

  18. Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A (1993) In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 14(5):359–364

    Article  Google Scholar 

  19. Kalia S, Kaith B, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272

    Article  Google Scholar 

  20. Grew N (1965) 1682. The anatomy of plants. Johnson Reprint Corp, New York

    Google Scholar 

  21. Dolmetsch HH, Dolmetsch H (1969) The fibrillar “bundling” of cellulose molecules in cotton1. Text Res J 39(6):568–584

    Google Scholar 

  22. Heyn ANJ (1955) Small particle X-ray scattering by fibers, size and shape of microcrystallites. J Appl Phys 26(5):519–526

    Article  Google Scholar 

  23. Tucker P, George W (1972) Microfibers within fibers: a review. Polym Eng Sci 12(5):364–377. doi:10.1002/pen.760120509

    Article  Google Scholar 

  24. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    Article  Google Scholar 

  25. Souza SF, Leao AL, Cai JH, Wu C, Sain M, Cherian BM (2010) Nanocellulose from curava fibers and their nanocomposites. Mol Cryst Liq Cryst 522(1):342–352

    Article  Google Scholar 

  26. Corrêa A, de Morais Teixeira E, Pessan L, Mattoso L (2010) Cellulose nanofibers from curaua fibers. Cellulose 17(6):1183–1192. doi:10.1007/s10570-010-9453-3

    Article  Google Scholar 

  27. Gañán P, Mondragon I (2002) Surface modification of fique fibers. Effect on their physico-mechanical properties. Polym Compos 23(3):383–394. doi:10.1002/pc.10440

    Article  Google Scholar 

  28. Souza SF, Ferreira M, Sain M, Ferreira MZ, Pupo HF, Cherian BM, Leão AL (2015) 22—The use of curaua fibers as reinforcements in composites. In: Faruk O, Sain M (eds) Biofiber reinforcements in composite materials. Woodhead Publishing, Cambridge, pp 700–720

    Chapter  Google Scholar 

  29. Cheng S, Panthapulakkal S, Sain M, Asiri A (2014) Aloe vera rind cellulose nanofibers‐reinforced films. J Appl Polym Sci. doi:10.1155/2014/903498

    Google Scholar 

  30. Adel AM, El-Gendy AA, Diab MA, Abou-Zeid RE, El-Zawawy WK, Dufresne A (2016) Microfibrillated cellulose from agricultural residues. Part I: Papermaking application. Ind Crop Prod 93(25):161–174

    Article  Google Scholar 

  31. Ass BA, Belgacem MN, Frollini E (2006) Mercerized linters cellulose: characterization and acetylation in N, N-dimethylacetamide/lithium chloride. Carbohydr Polym 63(1):19–29

    Article  Google Scholar 

  32. Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose and cellulose nanocrystals. BioResources 5(2):727–740

    Google Scholar 

  33. Kataoka Y, Kondo T (1999) Quantitative analysis for the cellulose Iα crystalline phase in developing wood cell walls. Int J Biol Macromol 24(1):37–41

    Article  Google Scholar 

  34. Vazquez G, Antorrena G, Gonzalez J, Freire S (1997) FTIR, 1H and 13C NMR characterization of acetosolv-solubilized pine and eucalyptus lignins. Holzforschung-Int J Bio Chem Phys Technol Wood 51(2):158–166

    Google Scholar 

  35. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12):1781–1788

    Article  Google Scholar 

  36. Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159. doi:10.1007/s10570-007-9145-9

    Article  Google Scholar 

  37. Monteiro SN, Calado V, Margem FM, Rodriguez RJ (2012) Thermogravimetric stability behavior of less common lignocellulosic fibers—a review. J Mater Res Technol 1(3):189–199

    Article  Google Scholar 

  38. Lombello CB, Malmonge SM, Wada MLF (2000) PolyHEMA and polyHEMA-poly(MMA-co-AA) as substrates for culturing vero cells. J Mater Sci 11(9):541–546. doi:10.1023/A:1008915801187

    Google Scholar 

  39. Malmonge S, Zavaglia CAdC, Santos Junior A, Wada M (1999) Avaliação da citotoxicidade de hidrogéis de polihema: um estudo in vitro. Res Biomed Eng 15(1–2):49–54

    Google Scholar 

  40. Freshney RI (2005) Culture of specific cell types. Wiley Online Library, New York

  41. Wang F (2006) Culture of animal cells: a manual of basic technique. In Vitro Cell Dev Biol Anim 42(5):169

    Article  Google Scholar 

  42. Miller RR, McDevitt CA (1991) A quantitative microwell assay for chondrocyte cell adhesion. Anal Biochem 192(2):380–383

    Article  Google Scholar 

  43. Alexandrescu L, Syverud K, Gatti A, Chinga-Carrasco G (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20(4):1765–1775

    Article  Google Scholar 

  44. Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18(3):775–786

    Article  Google Scholar 

  45. Moreira S, Silva NB, Almeida-Lima J, Rocha HAO, Medeiros SRB, Alves C, Gama FM (2009) BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol Lett 189(3):235–241

    Article  Google Scholar 

  46. Freshney RI (2000) Culture of animal cells, a manual of basic technique. John Wiley and Sons inc

Download references

Acknowledgements

This study was funded by CAPES/DFAIT (Grant Number 7604/13-0). S. F. SOUZA has received research scholarship grants from CAPES. The Staff at the Centre For Nanostructure Imaging from Department of Chemistry at University of Toronto are kindly recognized for their invaluable help and providing access to TEM. We are also thankful to the LNANO (Brazilian Nanotechnology National Laboratory at CNPEM, Campinas, Brazil) for SEM imaging under Proposal SEM – 19955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferreira.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, S.F., Leao, A.L., Lombello, C.B. et al. Cytotoxicity studies of membranes made with cellulose nanofibers from fique macrofibers. J Mater Sci 52, 2581–2590 (2017). https://doi.org/10.1007/s10853-016-0551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0551-y

Keywords

Navigation