Skip to main content
Log in

Enhanced electrical and thermoelectric properties from textured Bi1.6Pb0.4Ba2Co2Oy/Ag composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bi1.6Pb0.4Ba2Co2Oy/3 wt% Ag composites have been textured using the laser floating zone technique. Microstructural observations have shown the formation of relatively high amounts of secondary phases and cracks along the plate-like grains in the as-grown materials. In spite of these microstructural features, electrical properties have not been drastically decreased. Annealing of these as-grown rods has enhanced the grains connectivity, decreased the contents of the secondary phases, and healed the cracks, thereby increasing their electrical performances. It has been deduced that oxygen content in the thermoelectric phase has not been significantly modified through annealing, as demonstrated by the very similar Seebeck values at room temperature in the as-grown and annealed samples. As a consequence of the low electrical resistivity values in the annealed materials, they reached higher power factor values than the as-grown ones. The highest power factor at room temperature is in the range of those reported for single crystals, while at 650 °C, it is the highest reported in Bi–Ba–Co–O polycrystalline family so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rowe DM (2006) Thermoelectrics handbook: macro to nano. CRC Press, Boca Raton

    Google Scholar 

  2. Wang H, Hwang J, Snedaker ML, Kim IH, Kang C, Kim J, Stucky GD, Bowers J, Kim W (2015) High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem Mater 27:944–949. doi:10.1021/cm5042138

    Article  Google Scholar 

  3. Santamaria JA, Alkorta J, Sevillano JG (2015) Microcompression tests of single-crystalline and ultrafine grain Bi2Te3 thermoelectric material. J Mater Res 30:2593–2604. doi:10.1557/jmr.2015.170

    Article  Google Scholar 

  4. Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56:12685–12687. doi:10.1103/PhysRevB.56.R12685

    Article  Google Scholar 

  5. Funahashi R, Matsubara I, Ikuta H, Takeuchi T, Mizutani U, Sodeoka S (2000) An oxide single crystal with high thermoelectric performance in air. Jpn J Appl Phys 39:L1127–L1129. doi:10.1143/JJAP.39.L1127

    Article  Google Scholar 

  6. Constantinescu G, Rasekh Sh, Torres MA, Diez JC, Madre MA, Sotelo A (2013) Effect of Sr substitution for Ca on the Ca3Co4O9 thermoelectric properties. J Alloys Compds 577:511–515. doi:10.1016/j.jallcom.2013.07.005

    Article  Google Scholar 

  7. Maignan A, Pelloquin D, Hebert S, Klein Y, Hervieu M (2006) Thermoelectric power in misfit cobaltites ceramics: optimization by chemical substitutions. Bol Soc Esp Ceram V 45:122–125

    Article  Google Scholar 

  8. Constantinescu G, Rasekh Sh, Torres MA, Madre MA, Diez JC, Sotelo A (2013) Enhancement of the high-temperature thermoelectric performance of Bi2Ba2Co2Ox ceramics. Scr Mater 68:75–78. doi:10.1016/j.scriptamat.2012.09.014

    Article  Google Scholar 

  9. Itahara H, Xia C, Sugiyama J, Tani T (2004) Fabrication of textured thermoelectric layered cobaltites with various rock salt-type layers by using beta-Co(OH)2 platelets as reactive templates. J Mater Chem 14:61–66. doi:10.1039/b309804d

    Article  Google Scholar 

  10. Noudem JG, Kenfaui D, Chateigner D, Gomina M (2011) Granular and lamellar thermoelectric oxides consolidated by spark plasma sintering. J Electron Mater 40:1100–1106. doi:10.1007/s11664-011-1550-z

    Article  Google Scholar 

  11. Masuda Y, Nagahama D, Itahara H, Tani T, Seo WS, Koumoto K (2003) Thermoelectric performance of Bi- and Na-substituted Ca3Co4O9 improved through ceramic texturing. J Mater Chem 13:1094–1099. doi:10.1039/b301758n

    Article  Google Scholar 

  12. Rasekh Sh, Constantinescu G, Torres MA, Madre MA, Diez JC, Sotelo A (2012) Growth rate effect on microstructure and thermoelectric properties of melt grown Bi2Ba2Co2Ox textured ceramics. Adv Appl Ceram 111:490–494. doi:10.1179/1743676112Y.0000000039

    Article  Google Scholar 

  13. Costa FM, Ferreira NM, Rasekh Sh, Fernandes AJS, Torres MA, Madre MA, Diez JC, Sotelo A (2015) Very large superconducting currents induced by growth tailoring. Cryst Growth Des 15:2094–2101. doi:10.1021/cg5015972

    Article  Google Scholar 

  14. Madre MA, Torres MA, Rasekh Sh, Diez JC, Sotelo A (2012) Improvement of thermoelectric performances of Bi2Sr2Co1.8Ox textured materials by Pb addition using a polymer solution method. Mater Lett 76:5–7. doi:10.1016/j.matlet.2012.02.026

    Article  Google Scholar 

  15. Madre MA, Costa FM, Ferreira NM, Costa SIR, Rasekh Sh, Torres MA, Diez JC, Amaral VS, Amaral JS, Sotelo A (2016) High thermoelectric performance in Bi2−xPbxBa2Co2Oy promoted by directional growth and annealing. J Eur Ceram Soc 36:67–74. doi:10.1016/j.jeurceramsoc.2015.09.034

    Article  Google Scholar 

  16. Xiang P-H, Kinemuchi Y, Kaga H, Watari K (2008) Fabrication and thermoelectric properties of Ca3Co4O9/Ag composites. J Alloys Compds 454:364–369. doi:10.1016/j.jallcom.2006.12.102

    Article  Google Scholar 

  17. Wang S, Bai Z, Wang H, Lu Q, Wang J, Fu G (2013) High temperature thermoelectric properties of Bi2Sr2Co2Oy/Ag composites. J Alloys Compds 554:254–257. doi:10.1016/j.jallcom.2012.11.107

    Article  Google Scholar 

  18. Sotelo A, Rasekh Sh, Constantinescu G, Torres MA, Madre MA, Diez JC (2013) Improvement of textured Bi1.6Pb0.4Sr2Co1.8Ox thermoelectric performances by metallic Ag additions. Ceram Int 39:1597–1602. doi:10.1016/j.ceramint.2012.07.112

    Article  Google Scholar 

  19. Rasekh Sh, Sotelo A, Torres MA, Bosque P, Madre MA, Diez JC (2016) Thermoelectric properties of directionally grown Bi2Ba2Co2Oδ/Ag composites: Effect of Annealing. J Mater Sci: Mater Electron. doi:10.1007/s10854-016-5435-z

    Google Scholar 

  20. Sotelo A, Torres MA, Constantinescu G, Rasekh Sh, Diez JC, Madre MA (2012) Effect of Ag addition on the mechanical and thermoelectric performances of annealed Bi2Sr2Co1.8Ox textured ceramics. J Eur Ceram Soc 32:3745–3751. doi:10.1016/j.jeurceramsoc.2012.05.035

    Article  Google Scholar 

  21. Flahaut D, Allouche J, Sotelo A, Rasekh Sh, Torres MA, Madre MA, Diez JC (2016) Role of Ag in textured-annealed Bi2Ca2Co1.7Ox thermoelectric ceramic. Acta Mater 102:273–283. doi:10.1016/j.actamat.2015.09.036

    Article  Google Scholar 

  22. Angurel LA, Diez JC, de la Fuente GF, Gimeno F, Lera F, Lopez-Gascon C, Martinez E, Mora M, Navarro R, Sotelo A, Andres N, Recuero S, Arroyo MP (2006) Laser technologies applied to the fabrication and characterization of bulk Bi-2212 superconducting materials for power application. Phys Status Solidi A 203:2931–2937. doi:10.1002/pssa.200667005

    Article  Google Scholar 

  23. Sakai K, Motohashi T, Karppinen M, Yamauchi H (2005) Enhancement in thermoelectric characteristics of the misfit-layered cobalt oxide, [(Bi, Pb)2Ba1.8Co0.2O4 ± ω]0.5CoO2, through Pb-for-Bi substitution. Thin Solid Films 486:58–62. doi:10.1016/j.tsf.2004.10.064

    Article  Google Scholar 

  24. Sotelo A, Rasekh Sh, Torres MA, Bosque P, Madre MA, Diez JC (2016) Improved thermoelectric performances in textured Bi1.6Pb0.4Ba2Co2Oy/Ag composites. Ceram Int. doi:10.1016/j.ceramint.2016.08.202

    Google Scholar 

  25. Oka K, Azuma M, Chen W, Yusa H, Belik AA, Takayama Muromachi E, Mizumaki M, Ishimatsu N, Hiraoka N, Tsujimoto M, Tucker MG, Attfield JP, Shimakawa Y (2010) Pressure-induced spin-state transition in BiCoO3. J Am Chem Soc 132:9438–9443. doi:10.1021/ja102987d

    Article  Google Scholar 

  26. Becherer G, Ifland R (1954) Über eine präzisionsbestimmung der gitterkonstanten von silber nach dem rückstrahlverfahren. Naturwissenschaften 41:471

    Article  Google Scholar 

  27. Rasekh Sh, Madre MA, Diez JC, Guilmeau E, Marinel S, Sotelo A (2010) Effect of Pb substitution on the thermoelectrical properties of textured Bi2Ca2Co1.7Oy ceramics prepared by a polymer solution method. Bol Soc Esp Ceram V 49:371–376

    Google Scholar 

  28. Hao H, Yang H, Liu Y, Hu X (2011) High-temperature thermoelectric properties of Cu-substituted Bi2Ba2Co2−xCuxOy Oxides. J Mater Sci Technol 27:525–528. doi:10.1016/S1005-0302(11)60102-3

    Article  Google Scholar 

  29. Ang R, Sun YP, Luo X, Song WH (2007) A narrow band contribution with Anderson localization in Ag-doped layered cobaltites Bi2Ba3Co2Oy. J Appl Phys 102:073721. doi:10.1063/1.2795622

    Article  Google Scholar 

  30. Hao H, Yu H, Zhao L (2011) Thermoelectric characteristics of Pb- and La-doped Bi2Ba2Co2Oy ceramics. Adv Mater Res 228–229:804–808. doi:10.4028/www.scientific.net/AMR.226-228.804

    Article  Google Scholar 

  31. Motohashi T, Nonaka Y, Sakai K, Karppinen M, Yamauchi H (2008) Fabrication and thermoelectric characteristics of [(Bi, Pb)2Ba2O4 ± ω]0.5CoO2 bulks with highly aligned grain structure. J Appl Phys 103:033705. doi:10.1063/1.2838161

    Article  Google Scholar 

  32. Kobayashi W, Hebert S, Muguerra H, Grebille D, Pelloquin D, Maignan A (2008) Thermoelectric properties in the misfit-layered-cobalt oxides [Bi2A2O4][CoO2]b1/b2 (A=Ca, Sr, Ba, b1/b2=1.65, 1.82, 1.98) single crystals. In: Kim I-H (ed) Proceedings ICT’07 IEEE, Piscataway, pp 117–120

  33. Luo XG, Chen H, Wang GY, Wu G, Wu T, Zhao L, Chen XH (2008) Transport properties and magnetic-field-induced localization in the misfit cobaltite [Bi2Ba1.3K0.6Co0.1O4]RS[CoO2]1.97 single crystal. J Phys: Condens Matter 20:215221. doi:10.1088/0953-8984/20/21/215221

    Google Scholar 

  34. Koshibae W, Tsutsui K, Maekawa S (2000) Thermopower in cobalt oxides. Phys Rev B 62:6869–6872. doi:10.1103/PhysRevB.62.6869

    Article  Google Scholar 

  35. Sakai K, Karppinen M, Chen JM, Liu RS, Sugihara S, Yamauchi H (2006) Pb-for-Bi substitution for enhancing thermoelectric characteristics of [(Bi, Pb)2Ba2O ± ω]0.5CoO2. Appl Phys Lett 88:232102. doi:10.1063/1.2206134

    Article  Google Scholar 

  36. Hervieu M, Maignan A, Michel C, Hardy V, Creon N, Raveau B (2003) Metallicity and thermopower of the misfit cobaltite [Bi2Ba1.8Co0.2O4]RS[CoO2]2. Phys Rev B 67:045112. doi:10.1103/PhysRevB.67.045112

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the MINECO-FEDER (Project MAT2013-46505-C3-1-R). The authors wish to thank the Gobierno de Aragón-FEDER (Consolidated Research Groups T87 and T12) for their financial support. The authors gratefully acknowledge the permission granted for availing the services of Servicio General de Apoyo a la Investigación-SAI, the Universidad de Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sotelo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madre, M.A., Rasekh, S., Torres, M.A. et al. Enhanced electrical and thermoelectric properties from textured Bi1.6Pb0.4Ba2Co2Oy/Ag composites. J Mater Sci 52, 4833–4839 (2017). https://doi.org/10.1007/s10853-016-0718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0718-6

Keywords

Navigation