Skip to main content
Log in

Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electroactive electrospun fiber mat composites based on poly(vinylidene fluoride) (PVDF) with 5 and 10 % of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][NTf2]) ionic liquid (IL) were developed for potential applications in the biomedical area. The morphology and polymer crystalline phase content of the fibers were evaluated as a function of the processing conditions. Hydrophobic random and aligned fibers have been obtained with average fiber diameters between ~700 and 500 nm, the smaller diameters corresponding to the aligned fiber mats. The results show that the charge structure of [C2mim][NTf2] induces the crystallization of the PVDF fibers in the piezoelectric β-phase with full crystallization in this phase for an ionic liquid content of 10 wt%. Furthermore, the presence of the ionic liquid also increases the degree of crystallinity of the fibers. Thermal degradation studies show a single degradation process which is strongly influenced by the polymer–IL interactions. Finally, the non-cytotoxicity of the fiber mats indicates their suitability for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog Polym Sci 29:699–766

    Article  Google Scholar 

  2. Jagur-Grodzinski J (2006) Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym Adv Technol 17:395–418

    Article  Google Scholar 

  3. Ghosh S (2004) Recent research and development in synthetic polymer-based drug delivery systems. J Chem Res 2004(4):241–246

    Article  Google Scholar 

  4. Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5:1137–1158

    Article  Google Scholar 

  5. Xing C, Guan J, Chen Z, Zhu Y, Zhang B, Li Y, Li J (2015) Novel multifunctional nanofibers based on thermoplastic polyurethane and ionic liquid: towards antibacterial, anti-electrostatic and hydrophilic nonwovens by electrospinning. Nanotechnology 26(10):105704

    Article  Google Scholar 

  6. Pang C, Lee C, Suh K-Y (2013) Recent advances in flexible sensors for wearable and implantable devices. J Appl Polym Sci 130:1429–1441

    Article  Google Scholar 

  7. Bar-Cohen Yoseph, Zhang Q (2008) Electroactive polymer actuators and sensors. MRS Bull 33:173–177

    Article  Google Scholar 

  8. Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S (2015) Piezoelectric polymers as biomaterials for tissue engineering applications. Colloids Surf B 136:46–55

    Article  Google Scholar 

  9. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706

    Article  Google Scholar 

  10. Martins P, Costa CM, Botelho G, Lanceros-Mendez S, Barandiaran JM, Gutierrez J (2012) Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites. Mater Chem Phys 131:698–705

    Article  Google Scholar 

  11. Lopes AC, Silva MP, Gonçalves R, Pereira MFR, Botelho G, Fonseca AM, Lanceros-Mendez S, Neves IC (2010) Enhancement of the dielectric constant and thermal properties of α-Poly(vinylidene fluoride)/zeolite nanocomposites. J Phys Chem C 114:14446–14452

    Article  Google Scholar 

  12. Lopes AC, Carabineiro SAC, Pereira MFR, Botelho G, Lanceros-Mendez S (2013) Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. ChemPhysChem 14:1926–1933

    Article  Google Scholar 

  13. Zhu Y, Li C, Na B, Lv R, Chen B, Zhu J (2014) Polar phase formation and competition in the melt crystallization of poly (vinylidene fluoride) containing an ionic liquid. Mater Chem Phys 144:194–198

    Article  Google Scholar 

  14. He L, Sun J, Wang X, Wang C, Song R, Hao Y (2013) Facile and effective promotion of β crystalline phase in poly(vinylidene fluoride) via the incorporation of imidazolium ionic liquids. Polym Int 62:638–646

    Article  Google Scholar 

  15. Nunes-Pereira J, Ribeiro S, Ribeiro C, Gombek CJ, Gama FM, Gomes AC, Patterson DA, Lanceros-Méndez S (2015) Poly(vinylidene fluoride) and copolymers as porous membranes for tissue engineering applications. Polym Test 44:234–241

    Article  Google Scholar 

  16. Lopes AC, Ribeiro C, Sencadas V, Botelho G, Lanceros-Méndez S (2014) Effect of filler content on morphology and physical–chemical characteristics of poly(vinylidene fluoride)/NaY zeolite-filled membranes. J Mater Sci 49:3361–3370

    Article  Google Scholar 

  17. Gonçalves R, Martins P, Correia DM, Sencadas V, Vilas JL, León LM, Botelho G, Lanceros-Méndez S (2015) Development of magnetoelectric CoFe2O4/poly(vinylidene fluoride) microspheres. RSC Adv 5:35852–35857

    Article  Google Scholar 

  18. Ding J, Zhou D, Spinks G, Wallace G, Forsyth S, Forsyth M, MacFarlane D (2003) Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chem Mater 15:2392–2398

    Article  Google Scholar 

  19. Lu W, Fadeev AG, Qi B et al (2002) Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297:983–987

    Article  Google Scholar 

  20. Izgorodina EI (2013) In: Kenneth R. Seddon, Plechkova NV (eds) Ionic liquids UnCOILed: critical expert overviews. Wiley, New Jersey

  21. Ye Y-S, Rick J, Hwang B-J (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1:2719–2743

    Article  Google Scholar 

  22. Xing C, Zhao M, Zhao L, You J, Cao X, Li Y (2013) Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym Chem 4:5726–5734

    Article  Google Scholar 

  23. Hong W, Meis C, Heflin JR, Montazami R (2014) Evidence of counterion migration in ionic polymer actuators via investigation of electromechanical performance. Sens Actuators B 205:371–376

    Article  Google Scholar 

  24. Onnuri K, Tae Joo S, Moon Jeong P (2013) Fast low-voltage electroactive actuators using nanostructured polymer electrolytes. Nat Commun 4:2208

    Google Scholar 

  25. Cho MS, Nam JD, Choi HR, Koo UC, Lee Y (2005) Preparation of solid polymer actuator based on PEDOT/NBR/ionic liquid. Key Eng Mater 297–300:641–645

    Article  Google Scholar 

  26. Liu Y, Zhao R, Ghaffari M et al (2012) Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids. Sens Actuators A 181:70–76

    Article  Google Scholar 

  27. Asaka K (2012) Stretchable electronics. Wiley, New York

    Google Scholar 

  28. Nunes-Pereira J, Costa CM, Lanceros-Méndez S (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398

    Article  Google Scholar 

  29. Ramakrishna S, Fujihara K, Teo WE, Lim T-C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co. Pte. Ltd., Singapore

    Book  Google Scholar 

  30. Ribeiro C, Sencadas V, Ribelles JLG, Lanceros-Méndez S (2010) Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly(vinylidene fluoride) electrospun membranes. Soft Mater 8:274–287

    Article  Google Scholar 

  31. Costa CM, Nunes-Pereira J, Sencadas V, Silva MM, Lanceros-Méndez S (2013) Effect of fiber orientation in gelled poly(vinylidene fluoride) electrospun membranes for Li-ion battery applications. J Mater Sci 48:6833–6840

    Article  Google Scholar 

  32. Sencadas V, Ribeiro C, Bdikin IK, Kholkin AL, Lanceros-Mendez S (2012) Local piezoelectric response of single poly(vinylidene fluoride) electrospun fibers. Phys Status Solidi A 209:2605–2609

    Article  Google Scholar 

  33. Zhou R, Pramoda KP, Liu W, Zhou D, Ding G, He C, Leong YW, Lu X (2014) Electrospun poly(vinylidene fluoride) copolymer/octahydroxy-polyhedral oligomeric silsesquioxane nanofibrous mats as ionic liquid host: enhanced salt dissociation and its function in electrochromic device. Electrochim Acta 146:224–230

    Article  Google Scholar 

  34. Chinnappan A, Kim H (2013) Transition metal based ionic liquid (bulk and nanofiber composites) used as catalyst for reduction of aromatic nitro compounds under mild conditions. RSC Adv 3:3399–3406

    Article  Google Scholar 

  35. Huang X, Bahroloomi D, Xiao X (2014) A multilayer composite separator consisting of non-woven mats and ceramic particles for use in lithium ion batteries. J Solid State Electr 18:133–139

    Article  Google Scholar 

  36. Shubha N, Prasanth R, Hng HH, Srinivasan M (2014) Study on effect of poly (ethylene oxide) addition and in situ porosity generation on poly (vinylidene fluoride)-glass ceramic composite membranes for lithium polymer batteries. J Power Sources 267:48–57

    Article  Google Scholar 

  37. X-y Ye, Huang X-j Xu, Xu Z-K (2012) Nanofibrous mats with bird’s nest patterns by electrospinning. Chin J Polym Sci 30:130–137

    Article  Google Scholar 

  38. Bagdahn C, Taubert A (2013) Ionogel fiber mats: functional materials via electrospinning of PMMA and the ionic liquid bis(1-butyl-3-methyl-imidazolium) tetrachloridocuprate(II), [Bmim]2[CuCl4]. J Phys Sci 68:1163–1171

    Google Scholar 

  39. Mejri R, Dias JC, Lopes AC et al (2015) Effect of ionic liquid anion and cation on the physico-chemical properties of poly(vinylidene fluoride)/ionic liquid blends. Eur Polym J 71:304–313

    Article  Google Scholar 

  40. Dias JC, Lopes AC, Magalhães B, Botelho G, Silva MM, Esperança JMSS, Lanceros-Mendez S (2015) High performance electromechanical actuators based on ionic liquid/poly(vinylidene fluoride). Polym Test 48:199–205

    Article  Google Scholar 

  41. S. Plastics, Solef® PVDF (2015) http://www.solvayplastics.com/sites/solvayplastics/EN/specialty_polymers/fluoropolymers/Pages/Solef-PVDF.aspx. Accessed 30 Mar 2015

  42. Abramoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  43. Padrão J, Silva JP, Rodrigues LR, Dourado F, Lanceros-Méndez S, Sencadas V (2014) Modifying fish gelatin electrospun membranes for biomedical applications: cross-linking and swelling behavior. Soft Mater 12:247–252

    Article  Google Scholar 

  44. Ribeiro S, Costa P, Ribeiro C, Sencadas V, Botelho G, Lanceros-Méndez S (2014) Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composite B 67:30–38

    Article  Google Scholar 

  45. Xing C, Guan J, Li Y, Li J (2014) Effect of a room-temperature ionic liquid on the structure and properties of electrospun poly(vinylidene fluoride) nanofibers. ACS Appl Mater Interfaces 6:4447–4457

    Article  Google Scholar 

  46. Wolf S, Feldmann C (2012) 2[Co{1,4-C6H4(CN)2}2{NTf 2}2][SnI{Co(CO)4}3]2—a 2D coordination network with an intercalated carbonyl cluster. Dalton Trans 41:8455–8459

    Article  Google Scholar 

  47. Correia DM, Ribeiro C, Sencadas V, Botelho G, Carabineiro SAC, Ribelles JLG, Lanceros-Méndez S (2015) Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog Org Coat 85:151–158

    Article  Google Scholar 

  48. Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Méndez S (2012) Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci 47:1378–1388

    Article  Google Scholar 

  49. Low YKA, Tan LY, Tan LP, Boey FYC, Ng KW (2013) Increasing solvent polarity and addition of salts promote β-phase poly(vinylidene fluoride) formation. J Appl Polym Sci 128:2902–2910

    Article  Google Scholar 

  50. Ohno H (2011) Electrochemical aspects of ionic liquids. Wiley, Hoboken, N.J.

    Book  Google Scholar 

  51. Ionashiro M (2004) Giolito: Fundamentos da Termogravimetria, Análise Térmica Diferencial e Calorimetria Exploratória Diferencial. Giz Editorial, São Paulo

    Google Scholar 

  52. Sencadas V, Costa CM, Botelho G, Caparrós C, Ribeiro C, Gómez-Ribelles JL, Lanceros-Mendez S (2012) Thermal properties of electrospun poly(lactic acid) membranes. J Macromol Sci B 51:411–424

    Article  Google Scholar 

  53. Botelho G, Lanceros-Mendez S, Gonçalves AM, Sencadas V, Rocha JG (2008) Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase. J Non-Cryst Solids 354:72–78

    Article  Google Scholar 

  54. Silva SS, Duarte ARC, Carvalho AP, Mano JF, Reis RL (2011) Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomater 7:1166–1172

    Article  Google Scholar 

  55. Martins PM, Ribeiro S, Ribeiro C, Sencadas V, Gomes AC, Gama FM, Lanceros-Mendez S (2013) Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv 3:17938–17944

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Project UID/Multi/04551/2013 and 2012 Investigator FCT program. The authors also acknowledge the support from the COST Action, MP1206 “Electrospun Nano-fibers for bio inspired composite materials and innovative industrial applications.” JCD, DMC, SR, and CR thank the FCT for the SFRH/BD/90215/2012, SFRH/BD/82411/2011, SFRH/BD/111478/2015, and SFRH/BPD/90870/2012 grants, respectively. The authors acknowledge the financial support from the Basque Government Industry Department under the ELKARTEK Program. SLM thanks the Diputación de Bizkaia for the financial support under the Bizkaia Talent program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clarisse Ribeiro or Senentxu Lanceros-Méndez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, J.C., Correia, D.C., Lopes, A.C. et al. Development of poly(vinylidene fluoride)/ionic liquid electrospun fibers for tissue engineering applications. J Mater Sci 51, 4442–4450 (2016). https://doi.org/10.1007/s10853-016-9756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9756-3

Keywords

Navigation