Skip to main content
Log in

Structure–property relationship of new polyimide–organically modified silicate–phosphotungstic acid hybrid material system

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new hybrid material system was successfully developed from the combination of polyimide (PI), organically modified silicate (ORMOSIL), and phosphotungstic acid (HPW) from polycondensation reactions and sol–gel process. The materials were obtained in the form of flexible and free-standing films, with the formation of PI and ORMOSIL network confirmed by Fourier transform infrared. Solid-state phosphorus-31 nuclear magnetic resonance evaluated the HPW structure and confirmed its presence and also structural integrity in the materials after synthesis procedure. Thermogravimetric analysis revealed that the materials were thermally stable up to 773 K, and scanning electron microscopy images and X-ray micro-fluorescence mapping showed very good compatibility between the organic and inorganic phases with ORMOSIL improving the HPW dispersion. Furthermore, both ORMOSIL and HPW enhanced the permittivity of the materials from 2.5 to 4.3, compared to the neat PI, appointing them as potential candidates for electric and electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci 28:83–114. doi:10.1016/S0079-6700(02)00019-9

    Article  Google Scholar 

  2. Sanchez C, Shea KJ, Kitagawa S (2011) Hybrid materials themed issue. Chem Soc Rev 40:696–753. doi:10.1039/C0CS00136H

    Article  Google Scholar 

  3. Liaw D-J, Wang K-L, Huang Y-C et al (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37:907–974. doi:10.1016/j.progpolymsci.2012.02.005

    Article  Google Scholar 

  4. Morikawa A, Yamaguchi H, Kakimoto M, Imaj Y (1994) Formation of interconnected globular structure of silica phase in polyimide-silica hybrid films prepared by the sol-gel process. Chem Mater 6:913–917. doi:10.1021/cm00043a009

    Article  Google Scholar 

  5. Tripathi VS, Kandimalla VB, Ju H (2006) Preparation of ormosil and its applications in the immobilizing biomolecules. Sensors Actuators B 114:1071–1082. doi:10.1016/j.snb.2005.07.037

    Article  Google Scholar 

  6. Mackenzie JD, Bescher EP (1998) Structures, properties and potential applications of ormosils. J Sol Gel Sci Technol 13:371–377

    Article  Google Scholar 

  7. Ahmad Z, Al Sagheer F, Al Arbash A, Ali AAM (2009) Synthesis and characterization of chemically cross-linked polyimide–siloxane hybrid films. J Non-Cryst Solids 355:507–517. doi:10.1016/j.jnoncrysol.2009.01.019

    Article  Google Scholar 

  8. Min C, Wu T, Yang W, Chen C (2008) Functionalized mesoporous silica/polyimide nanocomposite thin films with improved mechanical properties and low dielectric constant. Compos Sci Technol 68:1570–1578. doi:10.1016/j.compscitech.2007.09.021

    Article  Google Scholar 

  9. Kim Y, Kang E, Kwon YS, Korea S (1997) Electrical properties of silica-polyimide composite dielectric thin Ghns prepared via sol-gel reaction and thermal imidization. Synth Met 85:1399–1400. doi:10.1016/S0379-6779(97)80291-3

    Article  Google Scholar 

  10. Tsai M, Whang W (2001) Low dielectric polyimide/poly (silsesquioxane)-like nanocomposite material. Polymer (Guildf) 42:4197–4207. doi:10.1016/S0379-6779(97)80291-3

    Article  Google Scholar 

  11. Deng H, Lin L, Ji M et al (2014) Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog Polym Sci 39:627–655. doi:10.1016/j.progpolymsci.2013.07.007

    Article  Google Scholar 

  12. Gao H, Tian Q, Lian K (2010) Polyvinyl alcohol-heteropoly acid polymer electrolytes and their applications in electrochemical capacitors. Solid State Ionics 181:874–876. doi:10.1016/j.ssi.2010.05.006

    Article  Google Scholar 

  13. Maranas JK (2012) Polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells. ACS Symp Series. doi:10.1021/bk-2012-1096

    Google Scholar 

  14. Suppes GM, Cameron CG, Freund MS (2010) A polypyrrole/phosphomolybdic acid|poly(3,4-ethylenedioxythiophene)/phosphotungstic acid asymmetric supercapacitor. J Electrochem Soc 157:A1030. doi:10.1149/1.3464802

    Article  Google Scholar 

  15. Cuentas-Gallegos AK, Lira-Cantú M, Casañ-Pastor N, Gómez-Romero P (2005) Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv Funct Mater 15:1125–1133. doi:10.1002/adfm.200400326

    Article  Google Scholar 

  16. Venkat N, Dang TD, Bai Z et al (2010) High temperature polymer film dielectrics for aerospace power conditioning capacitor applications. Mater Sci Eng B 168:16–21. doi:10.1016/j.mseb.2009.12.038

    Article  Google Scholar 

  17. López X, Carbó JJ, Bo C, Poblet JM (2012) Structure, properties and reactivity of polyoxometalates: a theoretical perspective. Chem Soc Rev 41:7537–7571. doi:10.1039/c2cs35168d

    Article  Google Scholar 

  18. Coronado E, Gómez-García CJ (1998) Polyoxometalate-based molecular materials. Chem Rev 98:273–296. doi:10.1021/cr970471c

    Article  Google Scholar 

  19. Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic-inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048. doi:10.1021/cr1000578

    Article  Google Scholar 

  20. Mastikhin VM, Kulikov SM, Nosov AV et al (1990) 1H and 31P MAS NMR studies of solid heteropolyacids and H3PW12O40 supported on SiO2. J Mol Catal 60:65–70. doi:10.1016/0304-5102(90)85068-S

    Article  Google Scholar 

  21. Micek-Ilnicka A (2009) The role of water in the catalysis on solid heteropolyacids. J Mol Catal A 308:1–14. doi:10.1016/j.molcata.2009.04.003

    Article  Google Scholar 

  22. Katsoulis DE (1998) A survey of applications of polyoxometalates. Chem Rev 98:359–388

    Article  Google Scholar 

  23. Solé VA, Papillon E, Cotte M et al (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta B 62:63–68. doi:10.1016/j.sab.2006.12.002

    Article  Google Scholar 

  24. Chang C, Chen W (2002) Synthesis and optical properties of polyimide-silica hybrid thin films. Chem Mater 14:4242–4248

    Article  Google Scholar 

  25. Chen Y, Iroh JO (1999) Synthesis and characterization of polyimide/silica hybrid composites. Chem Mater 11:1218–1222

    Article  Google Scholar 

  26. Son M, Ha Y, Choi M-C et al (2008) Microstructure and properties of polyamideimide/silica hybrids compatibilized with 3-aminopropyltriethoxysilane. Eur Polym J 44:2236–2243. doi:10.1016/j.eurpolymj.2008.04.037

    Article  Google Scholar 

  27. Son M, Han S, Han D et al (2008) Organic/inorganic hybrid composite films from polyimide and organosilica: effect of the type of organosilica precursors. Polym Bull 60:713–723. doi:10.1007/s00289-008-0904-z

    Article  Google Scholar 

  28. Bhure MH, Kumar I, Natu AD et al (2008) Phosphotungstic acid on silica with modified acid sites as a solid catalyst for selective cleavage of tert-butyldimethylsilyl ethers. Catal Commun 9:1863–1868. doi:10.1016/j.catcom.2008.03.017

    Article  Google Scholar 

  29. De Oliveira M, de Souza AL, Schneider J, Rodrigues-Filho UP (2011) Local structure and photochromic response in ormosils containing dodecatungstophosphoric acid. Chem Mater 23:953–963. doi:10.1021/cm1022272

    Article  Google Scholar 

  30. Snyder RW, Thomson B, Bartges B et al (1989) FTIR studies of polyimides: thermal curing. Macromolecules 22:4166–4172. doi:10.1021/ma00201a006

    Article  Google Scholar 

  31. Shin TJ, Lee B, Youn HS et al (2001) Time-resolved synchrotron X-ray diffraction and infrared spectroscopic studies of imidization and structural evolution in a microscaled film of PMDA-3,4′-ODA poly(amic acid). Langmuir 17:7842–7850. doi:10.1021/la0108656

    Article  Google Scholar 

  32. Diaham S, Locatelli ML, Lebey T, Malec D (2011) Thermal imidization optimization of polyimide thin films using Fourier transform infrared spectroscopy and electrical measurements. Thin Solid Films 519:1851–1856. doi:10.1016/j.tsf.2010.10.031

    Article  Google Scholar 

  33. Bridgeman AJ (2003) Density functional study of the vibrational frequencies of Keggin heteropolyanions. Chem Phys 287:55–69. doi:10.1016/S0301-0104(02)00978-3

    Article  Google Scholar 

  34. De Oliveira M, Rodrigues-Filho UP, Schneider J (2014) Thermal transformations and proton species in 12-phosphotungstic acid hexahydrate studied by 1 H and 31 P solid-state nuclear magnetic resonance. J Phys Chem C 118:11573–11583. doi:10.1021/jp501887x

    Article  Google Scholar 

  35. Essayem N, Tong YY, Jobic H, Vedrine JC (2000) Characterization of protonic sites in H 3 PW 12 O 40 and Cs 1.9 H 1.1 PW 12 O 40: a solid-state 1 H, 2 H, 31 P MAS-NMR and inelastic neutron scattering study on samples prepared under standard reaction conditions. Appl Catal A 195:109–122

    Article  Google Scholar 

  36. Deleplanque J, Hubaut R, Bodart P et al (2009) 1H and 31P solid-state NMR of trimethylphosphine adsorbed on heteropolytungstate supported on silica. Appl Surf Sci 255:4897–4901. doi:10.1016/j.apsusc.2008.12.031

    Article  Google Scholar 

  37. Bragg HW (1913) The reflection of X-rays by crystals. R Soc 17:43

    Google Scholar 

  38. Perrin FX (2011) Linear and branched alkyl substituted octakis(dimethylsiloxy)octasilsesquioxanes: WAXS and thermal properties. Eur Polym J 47:1370–1382. doi:10.1016/j.eurpolymj.2011.04.004

    Article  Google Scholar 

  39. Ferreira-neto EP, Ullah S, De CF et al (2015) Preparation, characterization and photochromic behavior of phosphotungstic acid-ormosil nanocomposites. Mater Chem Phys 153:410–421

    Article  Google Scholar 

  40. Jiang L, Wang W, Wei X et al (2007) Effects of water on the preparation, morphology, and properties of polyimide/silica nanocomposite films prepared by sol–gel process. J Appl Polym Sci 104:1579–1586. doi:10.1002/app.25692

    Article  Google Scholar 

  41. Celia JA (1992) Degradation and stability of polyimides. Polymer Degradation 36:99–110

    Article  Google Scholar 

  42. Jeong S, Kim D, Lee S et al (2007) Organic thin-film transistors using thin ormosil-based hybrid dielectric. Thin Solid Films 515:7701–7705. doi:10.1016/j.tsf.2006.11.143

    Article  Google Scholar 

  43. Chisca S, Musteata VE, Sava I, Bruma M (2011) Dielectric behavior of some aromatic polyimide films. Eur Polym J 47:1186–1197. doi:10.1016/j.eurpolymj.2011.01.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from CNPq (Grant. 142910/2010-4) and FAPESP (CEPID 2013/07793-6). This work was also performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. WAXS (proposal: GAR-14024), and μ-XRF (proposal: XAFS1-14257) data were collected in the Brazilian Synchrotron Light Source (LNLS) facilities, and we especially thank Dr. Matheus Cardoso and Dr. Carlos Alberto Pérez for their careful assistance on training on the beamlines and data manipulation. We also thank Prof. Dr. Antonio Carlos Hernandes and Technician Geraldo Frigo from Grupo de Crescimento de Cristais e Materiais Cerâmicos of the IFSC for the collaboration in the TGA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio A. S. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, F.A.S., Amaral, T., Ysnaga, O.A.E. et al. Structure–property relationship of new polyimide–organically modified silicate–phosphotungstic acid hybrid material system. J Mater Sci 51, 4815–4824 (2016). https://doi.org/10.1007/s10853-016-9773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9773-2

Keywords

Navigation