Skip to main content
Log in

Solidification of NaCl–LiF–\(\hbox {CaF}_{2}\) ternary composites

  • Eutectics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The purpose of this work is to refine the microstructure of eutectic halides, candidates to polaritonic metamaterials, through the directional solidification of ternary compositions. NaCl–LiF–\(\hbox {CaF}_{2}\) ternary composites have been solidified using Bridgman and micro-pulling-down techniques at pulling rates from 3 to 300 mm/h for the first time. The interparticle spacing is 12% smaller for this composition than for the binary fibrous NaCl–LiF eutectic. Conditions for solidification and growth in order to generate ternary aligned microstructures are discussed. The very small amount of melt remaining in the mixtures until \(580\,^{\circ }\hbox {C}\) is probably the consequence of solid solubility of LiCl in NaCl and the formation of the reciprocal salt pairs, as in NaCl–LiF. However, it does not prevent the solidification of homogenous ternary microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Oliete PB, Peña JI, Larrea A, Orera VM, LLorca J, Pastor JY, Martín A, Segurado J (2007) Adv Mater 19(17):2313

    Article  Google Scholar 

  2. Soler R, Molina-Aldareguia JM, Segurado J, Llorca J, Merino RI, Orera VM (2012) Int J Plast 36:50

    Article  Google Scholar 

  3. Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y (1997) Nature 389(6646):49

    Article  Google Scholar 

  4. Chen WT, Meredith CH, Dickey EC (2015) J Am Ceram Soc 98(7):2191

    Article  Google Scholar 

  5. Galasso FS (1967) J Metals 19(6):17

    Google Scholar 

  6. Yasui N, Ohashi Y, Kobayashi T, Den T (2012) Adv Mater 24(40):5464

    Article  Google Scholar 

  7. Ohashi Y, Yasui N, Yokota Y, Yoshikawa A, Den T (2013) Appl Phys Lett 102(5):051907

    Article  Google Scholar 

  8. Mesa MC, Oliete PB, Merino RI, Orera VM (2013) J Eur Ceram Soc 33(13):2587

    Article  Google Scholar 

  9. Reyes-Coronado A, Acosta MF, Merino RI, Orera VM, Kenanakis G, Katsarakis N, Kafesaki M, Mavidis C, de Abajo JG, Economou EN et al (2012) Opt Express 20(13):14663

    Article  Google Scholar 

  10. Massaouti M, Basharin AA, Kafesaki M, Acosta MF, Merino RI, Orera VM, Economou EN, Soukoulis CM, Tzortzakis S (2013) Opt Lett 38(7):1140

    Article  Google Scholar 

  11. Tonouchi M (2007) Nat Photonics 1(2):97

    Article  Google Scholar 

  12. Smye SW, Chamberlain JM, Fitzgerald AJ, Berry E (2001) Phys Med Biol 46(9):R101

    Article  Google Scholar 

  13. Woolard DL, Jensen JO, Hwu RJ (2007) Terahertz science and technology for military and security applications, vol 46. World Scientific Publishing Company Incorporated, Singapore

    Google Scholar 

  14. Edwards TC (2000) Gigahertz and terahertz technologies for broadband communications. Artech House, Norwood

    Google Scholar 

  15. Minier V, Durand G, Lagage PO, Talvard M, Travouillon T, Busso M, Tosti G et al (2007) EAS Publ Ser 25(1):321

    Article  Google Scholar 

  16. Ashcroft NM, Mermin ND (1976) Solid State Physics. Sanders College Publishing/Harcourt Brace, Orlando

    Google Scholar 

  17. Huang KC, Povinelli ML, Joannopoulos JD (2004) Appl Phys Lett 85(4):543

    Article  Google Scholar 

  18. Yannopapas V, Moroz A (2005) J Phys Condens Matter 17(25):3717

    Article  Google Scholar 

  19. Foteinopoulou S, Kafesaki M, Economou EN, Soukoulis CM (2011) Phys Rev B 84(3):035128

    Article  Google Scholar 

  20. Lee H, Liu Z, Xiong Y, Sun C, Zhang X et al (2007) Opt Express 15(24):15886

    Article  Google Scholar 

  21. Kafesaki M, Basharin AA, Economou EN, Soukoulis CM (2014) Photon Nanostruct Fundam Appl 12(4):376

    Article  Google Scholar 

  22. Merino RI, Acosta MF, Orera VM (2014) J Eur Ceram Soc 34(9):2061

    Article  Google Scholar 

  23. Davis SH (2001) Theory of solidification. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Hecht U, Gránásy L, Pusztai T, Böttger B, Apel M, Witusiewicz V, Ratke L, De Wilde J, Froyen L, Camel D et al (2004) Mater Sci Eng R Rep 46(1):1

    Article  Google Scholar 

  25. Orera VM, Peña JI, Oliete PB, Merino RI, Larrea Á (2012) J Cryst Growth 360:99

    Article  Google Scholar 

  26. Orera VM, Peña JI (2012) In: Bansal N, Boccaccini A (eds) Ceramic and composites processing methods, 1st edn. Wiley, New York, pp 4187–4457

    Google Scholar 

  27. Orera VM, Peña JI, Larrea Á, Merino RI, Oliete PB (2001) Ceram Trans 225:185

    Google Scholar 

  28. Orera VM, Larrea Á (2005) Opt Mater 27(11):1726

    Article  Google Scholar 

  29. LLorca J, Orera VM (2006) Prog Mater Sci 51(6):711

    Article  Google Scholar 

  30. Pawlak DA, Turczynski S, Gajc M, Kolodziejak K, Diduszko R, Rozniatowski K, Smalc J, Vendik I (2010) Adv Function Mater 20(7):1116

    Article  Google Scholar 

  31. Sadecka K, Gajc M, Orlinski K, Surma HB, Klos A, Jozwik-Biala I, Sobczak K, Dluzewski P, Toudert J, Pawlak DA (2015) Adv Opt Mater 3(3):381

    Article  Google Scholar 

  32. Acosta MF, Ganschow S, Klimm D, Serrano-Zabaleta S, Larrea Á, Merino RI (2013) J Eur Cer Soc

  33. Kim J, Aagesen LK, Choi JH, Choi J, Kim HS, Liu J, Cho CR, Kang JG, Ramazani A, Thornton K et al (2015) Adv Mater 27(31):4551

    Article  Google Scholar 

  34. Minford WJ, Bradt RC, Stubican VS (1979) J Am Ceram Soc 62(3–4):154

    Article  Google Scholar 

  35. Akamatsu S, Plapp M (2016) Curr Opin Solid State Mater Sci 20(1):46

    Article  Google Scholar 

  36. Steinmetz P, Hötzer J, Kellner M, Dennstedt A, Nestler B (2016) Comput Mater Sci 117:205

    Article  Google Scholar 

  37. Hötzer J, Steinmetz P, Jainta M, Schulz S, Kellner M, Nestler B, Genau A, Dennstedt A, Bauer M, Köstler H et al (2016) Acta Mater 106:249

    Article  Google Scholar 

  38. Hunt JD, Jackson KA (1966) Trans Metal Soci AIME 236(6):843

    Google Scholar 

  39. Himemiya T, Umeda T (1999) Mater Trans JIM 40:665

    Article  Google Scholar 

  40. Zheng LL, Larson DJ Jr, Zhang H (2000) J Cryst Growth 209(1):110

    Article  Google Scholar 

  41. Epelbaum BM, Yoshikawa A, Shimamura K, Fukuda T, Suzuki K, Waku Y (1999) J Cryst Growth 198:471

    Article  Google Scholar 

  42. Lee JH, Yoshikawa A, Fukuda T, Waku Y (2001) J Cryst Growth 231(1):115

    Article  Google Scholar 

  43. Oliete PB, Peña JI (2007) J Cryst Growth 304(2):514

    Article  Google Scholar 

  44. Mesa MC, Oliete PB, Orera V, Pastor JY, Martín A, Llorca J (2011) J Eur Ceram Soc 31(7):1241

    Article  Google Scholar 

  45. Mesa MC, Oliete PB, Larrea Á, Orera VM (2012) J Am Ceram Soc 95(3):1138

    Google Scholar 

  46. Maier D, Rhede D, Bertram R, Klimm D, Fornari R (2007) Opt Mater 30(1):11

    Article  Google Scholar 

  47. Li M, Constantinescu D, Wang L, Mohs A, Gmehling J (2010) Ind Eng Chem Res 49(10):4981

    Article  Google Scholar 

  48. Factsage 6.3, integrated thermodynamic databank system (2012). www.factsage.com

  49. Gladushchenko VA, Zakharchenko MA (1966) Russ J Inorg Chem 11:493

    Google Scholar 

  50. ICDD (2000) PDF-2 2000. Database, Center for Diffraction Data, Newton Square, PA, USA

  51. Gibbs JW Transactions of the Connecticut Academy of Arts and Sciences III, 108 (1875ff). Online: web.mit.edu/jwk/www/docs/Gibbs1875-1878-Equilibrium_of_Heterogeneous_Substances.pdf

  52. Haendler HM, Sennett PS, Wheeler CM (1959) J Electrochem Soc 106(3):264. doi:10.1149/1.2427319

    Article  Google Scholar 

  53. Żemcżużny S, Rambach F, Anorgan Z (1910) Chemistry 65(1):403

    Google Scholar 

  54. Bergman AG, Kozachenko EL, Berezina SI (1964) Russ J Inorg Chem 9:663

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the financial support by EU under the Project NMP4-SL-2008-213669-ENSEMBLE and MAT2013-41045R. MFA acknowledges Ministerio de Educación, Cultura y Deporte (Spain) for the FPU scholarship. R. Gotor from ICMA is acknowledged for his assistance in sample preparations. MFA and RIM would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María F. Acosta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acosta, M.F., Merino, R.I., Ganschow, S. et al. Solidification of NaCl–LiF–\(\hbox {CaF}_{2}\) ternary composites. J Mater Sci 52, 5520–5530 (2017). https://doi.org/10.1007/s10853-017-0814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0814-2

Keywords

Navigation