Skip to main content
Log in

Effect of layer thickness on the mechanical behaviour of oxidation-strengthened Zr/Nb nanoscale multilayers

  • Interface Behavior
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of bilayer thickness (L) reduction on the oxidation-induced strengthening of Zr/Nb nanoscale metallic multilayers (NMM) is investigated. Zr/Nb NMMs with L = 10 and 75 nm were annealed at 350 °C for a time ranging between 2 and 336 h, and the changes in structure and deformation behaviour were studied by nanoscale mechanical testing and analytical electron microscopy. Annealing led to the transformation of the Zr layers into ZrO2 after a few hours, while the Nb layers oxidised progressively at a much slower rate. The sequential oxidation of Zr and Nb layers was found to be key for the oxidation to take place without rupture of the multilayered structure and without coating spallation in all cases. However, the multilayers with the smallest bilayer thickness (L = 10 nm) presented superior damage tolerance and therefore structural integrity during the oxidation process, while for L = 75 nm the volumetric expansion associated with oxidation led to the formation of cracks at the interfaces and within the ZrO2 layers. As a result, the nanoindentation hardness increase after annealing was significantly higher for the nanolaminate with L = 10 nm. Comparison between nanoindentation and micropillar compression behaviour of the oxidised NMMs demonstrates that the hardness increase upon oxidation arises from the contribution of the residual stresses associated with the volume increase due to oxidation and to the higher strength of the oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4825

    Article  Google Scholar 

  2. Wang J, Misra A (2011) An overview of interface-dominated deformation mechanisms in metallic multilayers. Curr Opin Solid State Mater Sci 15:20–28

    Article  Google Scholar 

  3. Wang J, Zhou Q, Shao S, Misra A (2017) Strength and plasticity of nanolaminated materials. Mater Res Lett 5:1–19

    Article  Google Scholar 

  4. Piramanayagam SN (2007) Perpendicular recording media for hard disk drives. J Appl Phys 102:011301

    Article  Google Scholar 

  5. Andreas M, Kentaro T, David TM, Manfred A, Yoshiaki S, Yoshihiro I, Shouheng S, Fullerton EE (2002) Magnetic recording: advancing into the future. J Phys D Appl Phys 35:R157

    Article  Google Scholar 

  6. Chen P, Zhu M (2008) Recent progress in hydrogen storage. Mater Today 11:36–43

    Article  Google Scholar 

  7. Khafidz NZAK, Yaakob Z, Lim KL, Timmiati SN (2016) The kinetics of lightweight solid-state hydrogen storage materials: a review. Int J Hydrog Energy 41:13131–13151

    Article  Google Scholar 

  8. Holmberg K, Matthews A, Ronkainen H (1998) Coatings tribology—contact mechanisms and surface design. Tribol Int 31:107–120

    Article  Google Scholar 

  9. Callisti M, Karlik M, Polcar T (2016) Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites: effects on structure and mechanical properties. J Nucl Mater 473:18–27

    Article  Google Scholar 

  10. Callisti M, Lozano-Perez S, Polcar T (2016) Structural and mechanical properties of γ-irradiated Zr/Nb multilayer nanocomposites. Mater Lett 163:138–141

    Article  Google Scholar 

  11. Demkowicz MJ, Misra A, Caro A (2012) The role of interface structure in controlling high helium concentrations. Curr Opin Solid State Mater Sci 16:101–108

    Article  Google Scholar 

  12. Beyerlein IJ, Caro A, Demkowicz MJ, Mara NA, Misra A, Uberuaga BP (2013) Radiation damage tolerant nanomaterials. Mater Today 16:443–449

    Article  Google Scholar 

  13. Demkowicz MJ, Hoagland RG, Hirth JP (2008) Interface structure and radiation damage resistance in Cu–Nb multilayer nanocomposites. Phys Rev Lett 100:136102

    Article  Google Scholar 

  14. Wei QM, Li N, Mara N, Nastasi M, Misra A (2011) Suppression of irradiation hardening in nanoscale V/Ag multilayers. Acta Mater 59:6331–6340

    Article  Google Scholar 

  15. Fu EG, Misra A, Wang H, Shao L, Zhang X (2010) Interface enabled defects reduction in helium ion irradiated Cu/V nanolayers. J Nucl Mater 407:178–188

    Article  Google Scholar 

  16. Chen Y, Liu Y, Fu EG, Sun C, Yu KY, Song M, Li J, Wang YQ, Wang H, Zhang X (2015) Unusual size-dependent strengthening mechanisms in helium ion-irradiated immiscible coherent Cu/Co nanolayers. Acta Mater 84:393–404

    Article  Google Scholar 

  17. Lu YY, Kotoka R, Ligda JP, Cao BB, Yarmolenko SN, Schuster BE, Wei Q (2014) The microstructure and mechanical behavior of Mg/Ti multilayers as a function of individual layer thickness. Acta Mater 63:216–231

    Article  Google Scholar 

  18. Liu Y, Bufford D, Wang H, Sun C, Zhang X (2011) Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater 59:1924–1933

    Article  Google Scholar 

  19. Chen Y, Liu Y, Sun C, Yu KY, Song M, Wang H, Zhang X (2012) Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater 60:6312–6321

    Article  Google Scholar 

  20. Monclus MA, Karlik M, Callisti M, Frutos E, LLorca J, Polcar T, Molina-Aldareguia JM (2014) Microstructure and mechanical properties of physical vapor deposited Cu/W nanoscale multilayers: influence of layer thickness and temperature. Thin Solid Films 571:275–282

    Article  Google Scholar 

  21. Raghavan R, Harzer TP, Chawla V, Djaziri S, Phillipi B, Wehrs J, Wheeler JM, Michler J, Dehm G (2015) Comparing small scale plasticity of copper-chromium nanolayered and alloyed thin films at elevated temperatures. Acta Mater 93:175–186

    Article  Google Scholar 

  22. Kang BC, Kim HY, Kwon OY, Hong SH (2007) Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scripta Mater 57:703–706

    Article  Google Scholar 

  23. Zhu XY, Liu XJ, Zong RL, Zeng F, Pan F (2010) Microstructure and mechanical properties of nanoscale Cu/Ni multilayers. Mater Sci Eng A 527:1243–1248

    Article  Google Scholar 

  24. Yu KY, Liu Y, Rios S, Wang H, Zhang X (2013) Strengthening mechanisms of Ag/Ni immiscible multilayers with fcc/fcc interface. Surf Coat Technol 237:269–275

    Article  Google Scholar 

  25. Jankowski AF, Hayes JP, Saw CK (2007) Dimensional attributes in enhanced hardness of nanocrystalline Ta–V nanolaminates. Philos Mag 87:2323–2334

    Article  Google Scholar 

  26. Ham B, Zhang X (2011) High strength Mg/Nb nanolayer composites. Mater Sci Eng A 528:2028–2033

    Article  Google Scholar 

  27. Yang GH, Zhao B, Gao Y, Pan F (2005) Investigation of nanoindentation on Co/Mo multilayers by the continuous stiffness measurement technique. Surf Coat Technol 191:127–133

    Article  Google Scholar 

  28. Callisti M, Polcar T (2017) Combined size and texture-dependent deformation and strengthening mechanisms in Zr/Nb nano-multilayers. Acta Mater 124:247–260

    Article  Google Scholar 

  29. Zhou Q, Li JJ, Wang F, Huang P, Xu KW, Lu TJ (2016) Strain rate sensitivity of Cu/Ta multilayered films: comparison between grain boundary and heterophase interface. Scripta Mater 111:123–126

    Article  Google Scholar 

  30. Zhang JY, Li J, Liang XQ, Liu G, Sun J (2014) Achieving optimum mechanical performance in metallic nanolayered Cu/X (X = Zr, Cr) micropillars. Sci Rep 4:4205

    Article  Google Scholar 

  31. Zhang JY, Zhang X, Wang RH, Lei SY, Zhang P, Niu JJ, Liu G, Zhang GJ, Sun J (2011) Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: the constraining effects of the ductile phase on the brittle phase. Acta Mater 59:7368–7379

    Article  Google Scholar 

  32. Zhang JY, Lei S, Liu Y, Niu JJ, Chen Y, Liu G, Zhang X, Sun J (2012) Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Mater 60:1610–1622

    Article  Google Scholar 

  33. Zhang JY, Lei S, Niu J, Liu Y, Liu G, Zhang X, Sun J (2012) Intrinsic and extrinsic size effects on deformation in nanolayered Cu/Zr micropillars: from bulk-like to small-volume materials behavior. Acta Mater 60:4054–4064

    Article  Google Scholar 

  34. Mara NA, Bhattacharyya D, Hoagland RG, Misra A (2008) Tensile behavior of 40 nm Cu/Nb nanoscale multilayers. Scr Mater 58:874–877

    Article  Google Scholar 

  35. Hattar K, Misra A, Dosanjh MRF, Dickerson P, Robertson IM, Hoagland RG (2012) Direct Observation of crack propagation in copper–niobium multilayers. J Eng Mater Technol 134:21014

    Article  Google Scholar 

  36. Mara NA, Bhattacharyya D, Dickerson P, Hoagland RG, Misra A (2008) Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl Phys Lett 92:10–13

    Article  Google Scholar 

  37. Carpenter JS, Zheng SJ, Zhang RF, Vogel SC, Beyerlein IJ, Mara NA (2013) Thermal stability of Cu–Nb nanolamellar composites fabricated via accumulative roll bonding. Philos Mag 93:718–735

    Article  Google Scholar 

  38. Zheng S, Beyerlein IJ, Carpenter JS, Kang K, Wang J, Han W (2013) High-strength and thermally stable bulk nanolayered composites due to twin-induced interfaces. Nat Commun 4:1696

    Article  Google Scholar 

  39. Monclús MA, Zheng SJ, Mayeur JR, Beyerlein IJ, Mara NA, Polcar T, Llorca J, Molina-Aldareguía JM (2013) Optimum high temperature strength of two dimensional nanocomposites. APL Mater 1:52103

    Article  Google Scholar 

  40. Srinivasan D, Sanyal S, Corderman R, Subramanian PR (2006) Thermally stable nanomultilayer films of Cu/Mo. Metall Mater Trans A 37:995–1003

    Article  Google Scholar 

  41. Schweitz KO, Ratzkw K, Foord D, Thomas PJ, Greer AL, Geisler H, Chevalleir J, Bottiger J (2000) The microstructural development of Ag/Ni multilayers during annealing. Philos Mag A 80(8):1867–1877

    Article  Google Scholar 

  42. Lee H-J, Kwon K-W, Ryu C, Sinclair R (1999) Thermal stability of a Cu/Ta multilayer: an intriguing interfacial reaction. Acta Mater 47:3965–3975

    Article  Google Scholar 

  43. Hecker M, Pitschke W, Tietjen D, Schneider CM (2002) X-ray diffraction investigations of structural changes in CoyCu multilayers at elevated temperatures. Thin Solid Films 411:234–239

    Article  Google Scholar 

  44. Wen SP, Zong RL, Zeng F, Gu YL, Gao Y, Pan F (2008) Thermal stability of microstructure and mechanical properties of Ni/Ru multilayers. Surf Coat Technol 202:2040–2046

    Article  Google Scholar 

  45. Monclús MA, Callisti M, Polcar T, Yang LW, Molina-Aldareguía JM (2017) Selective oxidation-induced strengthening of Zr/Nb nanoscale multilayers. Acta Mater 122:1–10

    Article  Google Scholar 

  46. Eucken CM, Garde AM (1991) In: Zirconium in the nuclear industry: ninth international symposium, ASTM Spec (STP 1132). 1916 Race Street Philadelphia

  47. Misra A, Demkowicz MJ, Zhang X, Hoagland RG (2007) The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59:62–65

    Article  Google Scholar 

  48. Frutos E, Callisti M, Karlik M, Polcar T (2015) Length-scale-dependent mechanical behaviour of Zr/Nb multilayers as a function of individual layer thickness. Mater Sci Eng A 632:137–146

    Article  Google Scholar 

  49. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  Google Scholar 

  50. Yang LW, Mayer C, Chawla N, Llorca J, Molina-Aldareguía JM (2016) Deformation mechanisms of ultra-thin Al layers in Al/SiC nanolaminates as a function of thickness and temperature. Philos Mag 96:3336–3355

    Article  Google Scholar 

  51. Lotfian S, Mayer C, Chawla N, Llorca J, Misra A, Baldwin JK, Molina-Aldareguía JM (2014) Effect of layer thickness on the high temperature mechanical properties of Al/SiC nanolaminates. Thin Solid Films 571:260–267

    Article  Google Scholar 

  52. Goswami R, Pande CS, Bernstein N, Johannes MD, Baker C, Villalobos G (2015) A high degree of enhancement of strength of sputter deposited Al/Al2O3 multilayers upon post annealing. Acta Mater 95:378–385

    Article  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Advanced Grant VIRMETAL, Grant Agreement No. 669141), from the Madrid region under programme S2013/MIT-2775 (DIMMAT-CM), and by Czech Science Foundation, Grant No. 17-17921S. M. C. and T. P. acknowledge EPSRC Programme Grant EP/K040375/1 “South of England Analytical Electron Microscope”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Monclús, M. Callisti or J. M. Molina-Aldareguía.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monclús, M.A., Callisti, M., Polcar, T. et al. Effect of layer thickness on the mechanical behaviour of oxidation-strengthened Zr/Nb nanoscale multilayers. J Mater Sci 53, 5860–5878 (2018). https://doi.org/10.1007/s10853-017-1665-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1665-6

Keywords

Navigation