Skip to main content
Log in

Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Homogeneous dispersion of carbon nanotubes (CNTs) in polymers has significantly improved their processing and application as nanomaterials. Generally, CNTs tend to agglomerate due to their high aspect ratios and strong van der Waals interaction. Surface functionalization appears to be a solution to this problem. This study presents a controlled dispersion of carbon nanotubes in polyethylene through surface modification using a mixture of concentrated acid and octadecylamine (ODA). CNTs were characterized by Fourier transform infrared, Raman and X-ray photoelectron spectroscopy, and transmission electron microscopy. The results confirmed that carboxyl and alkane groups were successfully introduced on CNT surfaces. The acid- and amine-functionalized carbon nanotubes were dispersed in four solvents with different polarities (water, ethanol, acetone, and xylene) to correlate the degree of dispersion of CNT with their polarity. The results showed that CNT dispersion stability strongly depends on solvent and carbon nanotube polarities after the functionalization step. The nanohardness and tensile tests showed that the addition of CNTs, especially the functionalized with ODA, leaded the polymer harder, increasing its Young’s modulus and tensile strength. However, its toughness and deformation capacity were reduced. The potential applications of CNT-based polymer nanocomposites broaden considerably due to the surface engineering of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Farahbakhsh N, Shahbeigi-Roodposhti P, Sadeghifar H, Venditti RA, Jur JS (2017) Effect of isolation method on reinforcing capability of recycled cotton nanomaterials in thermoplastic polymers. J Mater Sci 52(9):4997–5013. https://doi.org/10.1007/s10853-016-0738-2

    Article  Google Scholar 

  2. Ferreira F, Pinheiro I, Gouveia R, Thim G, Lona L (2018) Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polym Compos. https://doi.org/10.1002/pc.24583

  3. Yao X, Gao X, Jiang J, Xu C, Deng C, Wang J (2018) Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites. Compos Part B Eng 132:170–177

    Article  Google Scholar 

  4. Zabihi O, Ahmadi M, Naebe M (2017) Self-assembly of quaternized chitosan nanoparticles within nanoclay layers for enhancement of interfacial properties in toughened polymer nanocomposites. Mater Des 119:277–289. https://doi.org/10.1016/j.matdes.2017.01.079

    Article  Google Scholar 

  5. Zakiyan SE, Famili MHN, Ako M (2014) Controlling foam morphology of polystyrene via surface chemistry, size and concentration of nanosilica particles. J Mater Sci 49(18):6225–6239. https://doi.org/10.1007/s10853-014-8347-4

    Article  Google Scholar 

  6. Li Y, Wang S, He E, Wang Q (2016) The effect of sliding velocity on the tribological properties of polymer/carbon nanotube composites. Carbon 106:106–109

    Article  Google Scholar 

  7. Huynh MTT, Nakayama T, Kawamoto A, Nguyen ST, Suzuki T, Suematsu H, Niihara K, Cho H-B, Choa Y-H (2016) Fabrication of stacked-cup carbon nanotube/polymer nanocomposite films with linear controlled percolation routes. Mater Chem Phys 171:39–44

    Article  Google Scholar 

  8. Sabet SM, Mahfuz H, Terentis AC, Nezakat M, Hashemi J (2018) Effects of POSS functionalization of carbon nanotubes on microstructure and thermomechanical behavior of carbon nanotube/polymer nanocomposites. J Mater Sci 53(12):8963–8977. https://doi.org/10.1007/s10853-018-2182-y

    Article  Google Scholar 

  9. Han B, Guo E, Xue X, Zhao Z, Luo L, Qu H, Niu T, Xu Y, Hou H (2017) Fabrication and densification of high performance carbon nanotube/copper composite fibers. Carbon 123:593–604

    Article  Google Scholar 

  10. Lawal AT (2016) Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater Res Bull 73:308–350

    Article  Google Scholar 

  11. Yourdkhani M, Hubert P (2015) A systematic study on dispersion stability of carbon nanotube-modified epoxy resins. Carbon 81:251–259

    Article  Google Scholar 

  12. Aalaie J, Rahmatpour A, Maghami S (2007) Preparation and characterization of linear low density polyethylene/carbon nanotube nanocomposites. J Macromol Sci B 46(5):877–889

    Article  Google Scholar 

  13. Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interf Sci 286(1):216–223

    Article  Google Scholar 

  14. Yuan Z, Lu Z, Chen M, Yang Z, Xie F (2015) Interfacial properties of carboxylic acid functionalized CNT/polyethylene composites: a molecular dynamics simulation study. Appl Surf Sci 351:1043–1052

    Article  Google Scholar 

  15. Abdolmaleki A, Mallakpour S, Borandeh S (2013) Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly (amide-ester-imide) containing l-phenylalanine and l-tyrosine linkages. Appl Surf Sci 287:117–123

    Article  Google Scholar 

  16. Cividanes L, Franceschi W, Ferreira FV, de Menezes BRC, Sales RCM, Thim GP (2017) How do CNT affect the branch and crosslink reactions in CNT-epoxy. Mater Res Express 4(10):105101

    Article  Google Scholar 

  17. Chowreddy RR, Nord-Varhaug K, Rapp F (2018) Recycled polyethylene terephthalate/carbon nanotube composites with improved processability and performance. J Mater Sci 53(9):7017–7029. https://doi.org/10.1007/s10853-018-2014-0

    Article  Google Scholar 

  18. Ansari R, Ajori S, Rouhi S (2015) Structural and elastic properties and stability characteristics of oxygenated carbon nanotubes under physical adsorption of polymers. Appl Surf Sci 332:640–647

    Article  Google Scholar 

  19. Redondo-Gómez C, Orozco F, Noeske P-LM, Soto-Tellini V, Corrales-Urena Y, Vega-Baudrit J (2017) Cholic acid covalently bound to multi-walled carbon nanotubes: improvements on dispersion stability. Mater Chem Phys 200:331–341

    Article  Google Scholar 

  20. Kharitonov AP, Maksimkin AV, Mostovaya KS, Kaloshkin SD, Gorshenkov MV, D’yachkova TP, Tkachev AG, Alekseiko LN (2015) Reinforcement of bulk ultrahigh molecular weight polyethylene by fluorinated carbon nanotubes insertion followed by hot pressing and orientation stretching. Compos Sci Technol 120:26–31

    Article  Google Scholar 

  21. Shi X, Jiang B, Wang J, Yang Y (2012) Influence of wall number and surface functionalization of carbon nanotubes on their antioxidant behavior in high density polyethylene. Carbon 50(3):1005–1013

    Article  Google Scholar 

  22. Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MS, Simões JA (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67(15–16):3071–3077

    Article  Google Scholar 

  23. Larsen RM (2009) Modification of single-walled carbon nanotubes and its influence on the interfacial strength in polymeric composites. J Mater Sci 44(3):799–807. https://doi.org/10.1007/s10853-008-3155-3

    Article  Google Scholar 

  24. Salam MA, Burk R (2017) Synthesis and characterization of multi-walled carbon nanotubes modified with octadecylamine and polyethylene glycol. Arab J Chem 10:S921–S927

    Article  Google Scholar 

  25. Antunes E, Almeida E, Rosa C, de Medeiros L, Pardini L, Massi M, Corat E (2010) Thermal annealing and electrochemical purification of multi-walled carbon nanotubes produced by camphor/ferrocene mixtures. J Nanosci Nanotechnol 10(2):1296–1303

    Article  Google Scholar 

  26. Francisco W, Ferreira FV, Ferreira EV, Cividanes LdS, Coutinho AdR, Thim GP (2015) Functionalization of multi-walled carbon nanotube and mechanical property of epoxy-based nanocomposite. J Aerospace Technol Manag 7(3):289–293

    Article  Google Scholar 

  27. Ferreira FV, Francisco W, de Menezes BRC, Cividanes LDS, dos Reis Coutinho A, Thim GP (2015) Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents. Appl Surf Sci 357:2154–2159

    Article  Google Scholar 

  28. Ferreira F, Menezes B, Franceschi W, Ferreira E, Lozano K, Cividanes L, Coutinho A, Thim G (2017) Influence of carbon nanotube concentration and sonication temperature on mechanical properties of HDPE/CNT nanocomposites. Fuller Nanotub Carbon Nanostruct. https://doi.org/10.1080/1536383X.2017.1359553

    Google Scholar 

  29. Cividanes L, Brunelli D, Antunes E, Corat E, Sakane K, Thim G (2013) Cure study of epoxy resin reinforced with multiwalled carbon nanotubes by Raman and luminescence spectroscopy. J Appl Polym Sci 127(1):544–553

    Article  Google Scholar 

  30. Jin SH, Park Y-B, Yoon KH (2007) Rheological and mechanical properties of surface modified multi-walled carbon nanotube-filled PET composite. Compos Sci Technol 67(15):3434–3441

    Article  Google Scholar 

  31. Smith AL (1979) Applied infrared spectroscopy, fundamentals, techniques, and analytical problem solving, vol 54. Chem Anal. Wiley, New York

    Google Scholar 

  32. Vuković G, Marinković A, Obradović M, Radmilović V, Čolić M, Aleksić R, Uskoković PS (2009) Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes. Appl Surf Sci 255(18):8067–8075

    Article  Google Scholar 

  33. Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalization of graphene and applications. In: Functionalizing graphene and carbon nanotubes. SpringerBriefs in applied sciences and technology. Springer, Cham, pp 1–29

  34. Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107

    Article  Google Scholar 

  35. Pang H, Piao Y-Y, Cui C-H, Bao Y, Lei J, Yuan G-P, Zhang C-L (2013) Preparation and performance of segregated polymer composites with hybrid fillers of octadecylamine functionalized graphene and carbon nanotubes. J Polym Res 20(11):304

    Article  Google Scholar 

  36. Zhang X, Huang Q, Liu M, Tian J, Zeng G, Li Z, Wang K, Zhang Q, Wan Q, Deng F (2015) Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu 2 + removal. Appl Surf Sci 343:19–27

    Article  Google Scholar 

  37. Boncel S, Koziol KK (2014) Enhanced graphitization of c-CVD grown multi-wall carbon nanotube arrays assisted by removal of encapsulated iron-based phases under thermal treatment in argon. Appl Surf Sci 301:488–491

    Article  Google Scholar 

  38. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46(6):833–840

    Article  Google Scholar 

  39. Sobkowicz MJ, Dorgan JR, Gneshin KW, Herring AM, McKinnon JT (2009) Controlled dispersion of carbon nanospheres through surface functionalization. Carbon 47(3):622–628

    Article  Google Scholar 

  40. Kudin KN, Ozbas B, Schniepp HC, Prud’Homme RK, Aksay IA, Car R (2008) Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 8(1):36–41

    Article  Google Scholar 

  41. Scaffaro R, Maio A (2012) Enhancing the mechanical performance of polymer based nanocomposites by plasma-modification of nanoparticles. Polym Test 31(7):889–894

    Article  Google Scholar 

  42. Vix-Guterl C, Couzi M, Dentzer J, Trinquecoste M, Delhaes P (2004) Surface characterizations of carbon multiwall nanotubes: comparison between surface active sites and Raman spectroscopy. J Phys Chem B 108(50):19361–19367

    Article  Google Scholar 

  43. Ferreira FV, Cividanes LDS, Brito FS, Menezes BRCd, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalizing Graphene and carbon nanotubes: a review. Springer, New york

    Book  Google Scholar 

  44. De Simone Cividanes L, Simonetti EAN, de Oliveira JIS, Serra AA, de Souza Carlos, Barboza J, Thim GP (2015) The sonication effect on CNT-epoxy composites finally clarified. Polym Compos. https://doi.org/10.1002/pc.23767

    Google Scholar 

  45. Dintcheva NT, Arrigo R, Morici E, Gambarotti C, Carroccio S, Cicogna F, Filippone G (2015) Multi-functional hindered amine light stabilizers-functionalized carbon nanotubes for advanced ultra-high molecular weight polyethylene-based nanocomposites. Compos Part B Eng 82:196–204

    Article  Google Scholar 

  46. Dresselhaus M, Jorio A, Souza Filho A, Saito R (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos Trans R Soc A 368(1932):5355–5377

    Article  Google Scholar 

  47. Swartz WE Jr (1973) X-ray photoelectron spectroscopy. Anal Chem 45(9):788A–800a

    Article  Google Scholar 

  48. Mattevi C, Wirth CT, Hofmann S, Blume R, Cantoro M, Ducati C, Cepek C, Knop-Gericke A, Milne S, Castellarin-Cudia C (2008) In-situ X-ray photoelectron spectroscopy study of catalyst–support interactions and growth of carbon nanotube forests. J Phys Chem C 112(32):12207–12213

    Article  Google Scholar 

  49. Seah M (1986) Data compilations: their use to improve measurement certainty in surface analysis by AES and XPS. Surf Interf Anal 9(2):85–98

    Article  Google Scholar 

  50. Oswald S (2013) X-ray photoelectron spectroscopy in analysis of surfaces. Encyclopedia of Analytical Chemistry. Wiley, New York

    Google Scholar 

  51. Watts JF (1994) X-ray photoelectron spectroscopy. Surf Sci Tech 45(6–7):653–671

    Google Scholar 

  52. Lakshminarayanan PV, Toghiani H, Pittman CU Jr (2004) Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 42(12–13):2433–2442

    Article  Google Scholar 

  53. Ferreira FV, Cividanes LDS, Brito FS, de Menezes BRC, Franceschi W, Simonetti EAN, Thim GP (2016) Functionalization of carbon nanotube and applications. In: Functionalizing graphene and carbon nanotubes. SpringerBriefs in applied sciences and technology. Springer, Cham, pp 31–61

  54. Ma P-C, Mo S-Y, Tang B-Z, Kim J-K (2010) Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites. Carbon 48(6):1824–1834

    Article  Google Scholar 

  55. Soares MC, Viana MM, Schaefer ZL, Gangoli VS, Cheng Y, Caliman V, Wong MS, Silva GG (2014) Surface modification of carbon black nanoparticles by dodecylamine: thermal stability and phase transfer in brine medium. Carbon 72:287–295

    Article  Google Scholar 

  56. Sun W, Liu Z, Jiang C, Xue Y, Chu W, Zhao X (2013) Experimental and theoretical investigation on the interaction between palladium nanoparticles and functionalized carbon nanotubes for Heck synthesis. Catal Today 212:206–214

    Article  Google Scholar 

  57. Radovic L, Silva I, Ume J, Menendez J, Leon CLY, Scaroni A (1997) An experimental and theoretical study of the adsorption of aromatics possessing electron-withdrawing and electron-donating functional groups by chemically modified activated carbons. Carbon 35(9):1339–1348

    Article  Google Scholar 

  58. Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M, Muhler M (2010) The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys Chem Chem Phys 12(17):4351–4359

    Article  Google Scholar 

  59. Ramanathan T, Fisher F, Ruoff R, Brinson L (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17(6):1290–1295

    Article  Google Scholar 

  60. Wang R, Wang H, Sun L, Wang E, Zhu Y, Zhu Y (2016) The fabrication and tribological behavior of epoxy composites modified by the three-dimensional polyurethane sponge reinforced with dopamine functionalized carbon nanotubes. Appl Surf Sci 360:37–44

    Article  Google Scholar 

  61. Reichardt C, Welton T (2011) Solvents and solvent effects in organic chemistry. Wiley, New York

    Google Scholar 

  62. Shieh Y-T, Liu G-L, Wu H-H, Lee C-C (2007) Effects of polarity and pH on the solubility of acid-treated carbon nanotubes in different media. Carbon 45(9):1880–1890

    Article  Google Scholar 

  63. Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476–481

    Article  Google Scholar 

  64. Ferreira C, Dal Castel C, Oviedo M, Mauler R (2013) Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta 553:40–48

    Article  Google Scholar 

  65. Kim J, Kwak S, Hong SM, Lee JR, Takahara A, Seo Y (2010) Nonisothermal crystallization behaviors of nanocomposites prepared by in situ polymerization of high-density polyethylene on multiwalled carbon nanotubes. Macromol 43(24):10545–10553

    Article  Google Scholar 

  66. Grady BP (2012) Effects of carbon nanotubes on polymer physics. J Polym Sci Polym Phys 50(9):591–623

    Article  Google Scholar 

  67. Ferreira FV, Francisco W, Menezes BR, Brito FS, Coutinho AS, Cividanes LS, Coutinho AR, Thim GP (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929

    Article  Google Scholar 

  68. Peneva Y, Valcheva M, Minkova L, Mičušík M, Omastová M (2008) Nonisothermal crystallization kinetics and microhardness of PP/CNT composites. J Macromol Sci B 47(6):1197–1210

    Article  Google Scholar 

  69. Dutta A, Penumadu D, Files B (2004) Nanoindentation testing for evaluating modulus and hardness of single-walled carbon nanotube–reinforced epoxy composites. J Mater Res 19(1):158–164

    Article  Google Scholar 

  70. Vega J, Martinez-Salazar J, Trujillo M, Arnal M, Muller A, Bredeau S, Dubois P (2009) Rheology, processing, tensile properties, and crystallization of polyethylene/carbon nanotube nanocomposites. Macromol 42(13):4719–4727

    Article  Google Scholar 

  71. Zou Y, Feng Y, Wang L, Liu X (2004) Processing and properties of MWNT/HDPE composites. Carbon 42(2):271–277

    Article  Google Scholar 

  72. Mohsin MA, Arsad A, Alothman OY (2014) Enhanced thermal, mechanical and morphological properties of CNT/HDPE nanocomposite using MMT as secondary filler. WASET 8(2):117–120

    Google Scholar 

  73. Michler GH, Balta-Calleja FJ (2016) Mechanical properties of polymers based on nanostructure and morphology, vol 71. CRC Press, New York

    Google Scholar 

  74. Yang BX, Pramoda KP, Xu GQ, Goh SH (2007) Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv Funct Mater 17(13):2062–2069

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Grant 2014/17492-6; 2016/09588-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support; and Laboratórios Associados de Sensores, Instituto Nacional de Pesquisas Espaciais (LAS/INPE) and Laboratório de Espectroscopia de Fotoelétrons, Universidade Estadual Paulista (LEFE/UNESP) for collaboration. The authors also gratefully acknowledge the Brazilian Center for Research in Energy and Materials (LME/LNNano/CNPEM) for TEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. R. C. de Menezes or F. V. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Menezes, B.R.C., Ferreira, F.V., Silva, B.C. et al. Effects of octadecylamine functionalization of carbon nanotubes on dispersion, polarity, and mechanical properties of CNT/HDPE nanocomposites. J Mater Sci 53, 14311–14327 (2018). https://doi.org/10.1007/s10853-018-2627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2627-3

Keywords

Navigation