Skip to main content
Log in

Poly(ε-caprolactone)/cellulose nanocrystal nanocomposite mechanical reinforcement and morphology: the role of nanocrystal pre-dispersion

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cellulose nanocrystal (CNC) incorporation in polymeric matrices is an environmentally friendly approach to mechanical reinforcement. In general, significant mechanical reinforcement can only be achieved by means of good CNC dispersion at random orientation. These primary characteristics are even more relevant for the preparation of nanocomposites based on hydrophobic matrices, such as poly(ε-caprolactone) (PCL). A straightforward approach to improve CNC dispersion in hydrophobic matrices is their surface modification. However, this extra step is usually complex and often impairs particle–particle interactions, which are also key to mechanical reinforcement. In this work, poly(ε-caprolactone)/neat cellulose nanocrystal nanocomposites were prepared by a specific procedure that combined solvent exchange and solvent casting methodologies, avoiding the use of any additives or chemical modification. These nanocomposites were investigated in terms of the CNC percolation network formation and its effect on the overall mechanical properties. The results showed that significant mechanical reinforcement was obtained, reaching a 155% Young’s modulus increase at 25 wt% CNC content. TEM showed a percolated network in the PCL/CNC25 nanocomposite. In terms of morphology and nanostructure, increasing CNC concentration also promoted a reduction in PCL spherulite size and lamellar thickness. These results pointed out to CNC preferential localization in the interfibrillar region. In conclusion, the solvent exchange methodology presented herein led to mechanically reinforced PCL/CNC nanocomposites with small crystalline domains intertwined with a percolated CNC network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128

    Article  CAS  Google Scholar 

  2. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulose whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  3. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromol 10:425–432

    Article  CAS  Google Scholar 

  4. Hassan ML, Bras J, Hassan EA, Fadel SM, Dufresne A (2012) Polycaprolactone/modified bagasse whisker nanocomposites with improved moisture-barrier and biodegradability properties. J Appl Polym Sci 125:E10–E19

    Article  CAS  Google Scholar 

  5. Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002–5010

    Article  CAS  Google Scholar 

  6. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  7. de Oliveira Taipina M, Ferrarezi MMF, Yoshida IVP, Gonçalves MDC (2013) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20:217–226

    Article  Google Scholar 

  8. Qian S, Sheng K, Yu K, Xu L, Fontanillo Lopez CA (2018) Improved properties of PLA biocomposites toughened with bamboo cellulose nanowhiskers through silane modification. J Mater Sci 53:10920–10932. https://doi.org/10.1007/s10853-018-2377-2

    Article  CAS  Google Scholar 

  9. Junior de Menezes A, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  Google Scholar 

  10. Ljungberg N, Cavaillé JY, Heux L (2006) Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers. Polymer 47:6285–6292

    Article  CAS  Google Scholar 

  11. Mariano M, Pilate F, De Oliveira FB, Khelifa F, Dubois P, Raquez JM, Dufresne A (2017) Preparation of cellulose nanocrystal-reinforced poly(lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants. ACS Omega 2:2678–2688

    Article  CAS  Google Scholar 

  12. Meesorn W, Shirole A, Vanhecke D, De Espinosa LM, Weder C (2017) A simple and versatile strategy to improve the mechanical properties of polymer nanocomposites with cellulose nanocrystals. Macromolecules 50:2364–2374

    Article  CAS  Google Scholar 

  13. Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A (2016) Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232

    Article  CAS  Google Scholar 

  14. Dufresne A (2008) Polysaccharide nanocrystal reinforced nanocomposites. Can J Chem 86:484–494

    Article  CAS  Google Scholar 

  15. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18

    Article  CAS  Google Scholar 

  16. Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  17. Favier V, Canova GR, Shrivastava SC, Cavaille JY (1997) Mechanical percolation in cellulose whisker nanocomposites. Polym Eng Sci 37:1732–1739

    Article  CAS  Google Scholar 

  18. Fralick BS, Gatzke EP, Baxter SC (2012) Three-dimensional evolution of mechanical percolation in nanocomposites with random microstructures. Prob Eng. Mech. 30:1–8

    Article  Google Scholar 

  19. Loos MR, Manas-Zloczower I (2013) Micromechanical models for carbon nanotube and cellulose nanowhisker reinforced composites. Polym Eng Sci 53:882–887

    Article  CAS  Google Scholar 

  20. Favier V, Dendievel R, Canova G, Cavaille JY, Gilormini P (1997) Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Mater 45:1557–1565

    Article  CAS  Google Scholar 

  21. Siqueira G, Bras J, Follain N, Belbekhouche S, Marais S, Dufresne A (2013) Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr Polym 91:711–717

    Article  CAS  Google Scholar 

  22. Wang W, Liu D, Lu L, Chen H, Gong T, Lv J, Zhou S (2016) The improvement of the shape memory function of poly(ε-caprolactone)/nano-crystalline cellulose nanocomposites via recrystallization under a high-pressure environment. J Mater Chem A 4:5984–5992

    Article  CAS  Google Scholar 

  23. Lv Q, Xu C, Wu D, Wang Z, Lan R, Wu L (2017) The role of nanocrystalline cellulose during crystallization of poly(ε-caprolactone) composites: nucleation agent or not? Compos Part A Appl Sci Manuf 92:17–26

    Article  CAS  Google Scholar 

  24. Siqueira G, Fraschini C, Bras J, Dufresne A, Prud’homme R, Laborie M-P (2011) Impact of the nature and shape of cellulosic nanoparticles on the isothermal crystallization kinetics of poly(ε-caprolactone). Eur Polym J 47:2216–2227

    Article  CAS  Google Scholar 

  25. Siqueira G, Mathew AP, Oksman K (2011) Processing of cellulose nanowhiskers/cellulose acetate butyrate nanocomposites using sol–gel process to facilitate dispersion. Compos Sci Technol 71:1886–1892

    Article  CAS  Google Scholar 

  26. Xu C, Chen J, Wu D, Chen Y, Lv Q, Wang M (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property relation study. Carbohydr Polym 146:58–66

    Article  CAS  Google Scholar 

  27. Hammersley AP, Svensson SO, Thompson A, Graafsma H, Kvick E, Moy JP (1995) Calibration and correction of distortions in two-dimensional detector systemsa). Rev Sci Instrument 66:2729–2733

    Article  CAS  Google Scholar 

  28. Plivelic S, Cassu SN, do Carmo Gonçalves M, Torriani IL (2007) Structure and morphology of poly(ε-caprolactone)/chlorinated polyethylene (PCL/PECl) blends investigated by DSC, simultaneous SAXS/WAXD, and elemental mapping by ESI-TEM. Macromolecules 40:253–264

    Article  CAS  Google Scholar 

  29. Wurm A, Lellinger D, Minakov AA, Skipa T, Pötschke P, Nicula R, Alig I, Schick C (2014) Crystallization of poly(ε-caprolactone)/MWCNT composites: a combined SAXS/WAXS, electrical and thermal conductivity study. Polymer 55:2220–2232

    Article  CAS  Google Scholar 

  30. Strobl GR, Schneider M (1980) Direct evaluation of the electron density correlation function of partially crystalline polymers. J Polym Sci Polym Phys Ed 18:1343–1359

    Article  CAS  Google Scholar 

  31. Rabiej S, Rabiej M (2011) Determination of the parameters of lamellar structure of semicrystalline polymers using a computer program SAXSDAT. Polimery 56:662–670

    CAS  Google Scholar 

  32. Tsuji H, Ikada Y (1998) Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(L-lactide) and poly (ε-caprolactone) in phosphate-buffered solution. J Appl Polym Sci 67:405–415

    Article  CAS  Google Scholar 

  33. Crescenzi V, Manzini G, Calzolari G, Borri C (1972) Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463

    Article  CAS  Google Scholar 

  34. Girouard N, Schueneman GT, Shofner ML, Meredith JC (2015) Exploiting colloidal interfaces to increase dispersion, performance, and pot-life in cellulose nanocrystal/waterborne epoxy composites. Polymer 68:111–121

    Article  CAS  Google Scholar 

  35. Mariano M, El Kissi N, Dufresne A (2015) Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur Polym J 69:208–223

    Article  CAS  Google Scholar 

  36. Hoeng F, Denneulin A, Neuman C, Bras J (2015) Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. J. Nanoparticle Res 17:244

    Article  Google Scholar 

  37. Socrates G (2001) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, New York

    Google Scholar 

  38. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  39. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chemie Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  40. Bower DI (2002) An introduction to polymer physics, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  41. Koleske JV, Lundberg RD (1969) Lactone polymers. I. Glass transition temperature of poly-ε-caprolactone by means of compatible polymer mixtures. J Polym Sci Part A 7:795–807

    Article  CAS  Google Scholar 

  42. Shishehbor M, Dri FL, Moon RJ, Zavattieri PD (2018) A continuum-based structural modeling approach for cellulose nanocrystals (CNCs). J Mech Phys Solids 111:308–332

    Article  CAS  Google Scholar 

  43. Takayanagi M, Uemura S, Minami S (1964) Application of equivalent model method to dynamic rheo-optical properties of crystalline polymer. J Polym Sci Part C Polym Symp 5:113–122

    Article  Google Scholar 

  44. Ouali N, Cavaille JY, Perez J (1991) Elastic, viscoelastic and plastic behavior of multiphase polymer blends. Plast Rubber Compos Process Appl 16:55–60

    CAS  Google Scholar 

  45. Sapkota J, Martinez Garcia JC, Lattuada M (2017) Reinterpretation of the mechanical reinforcement of polymer nanocomposites reinforced with cellulose nanorods. J Appl Polym Sci 134:45354

    Article  Google Scholar 

  46. Stauffer D, Aharony A (1994) Introduction to Percolation theory, 2nd edn. Taylor & Francis, London

    Google Scholar 

  47. De Gennes PG (1979) Scaling concepts in polymer physics, 1st edn. Cornell University Press, Ithaca

    Google Scholar 

  48. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488

    Article  CAS  Google Scholar 

  49. Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    Article  CAS  Google Scholar 

  50. Debier D, Jonas AM, Legras R (1998) Blends of polycarbonate and acrylic polymers: crystallization of polycarbonate. J Polym Sci Part B Polym Phys 36:2197–2210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grant Number 130911/2015-1), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant Numbers 2010/17804-7, 2016/02414-5) and SPRINT (Grant Number 2017/50274-0). The authors gratefully acknowledge the Brazilian Center for Research in Energy and Materials (CNPEM) laboratories: Center Nanotechnology National Laboratory (LME/LNNano) and staff for the use of TEM facilities, as well as the Brazilian Synchrotron Light Laboratory (LNLS) for the beamtime granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Germiniani, L.G.L., da Silva, L.C.E., Plivelic, T.S. et al. Poly(ε-caprolactone)/cellulose nanocrystal nanocomposite mechanical reinforcement and morphology: the role of nanocrystal pre-dispersion. J Mater Sci 54, 414–426 (2019). https://doi.org/10.1007/s10853-018-2860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2860-9

Keywords

Navigation