Skip to main content
Log in

Improvement of thermoelectric properties of Ca0.9Gd0.1MnO3 by powder engineering through K2CO3 additions

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxide materials based on calcium manganite show clear prospects as thermoelectrics, provided by their stability at high temperatures and inherent flexibility in tuning the relevant electrical and thermal transport properties. Donor-doped CaMnO3 is an n-type semiconductor with a perovskite structure and relatively high thermoelectric performance. In this work, the precursor powders have been modified through potassium carbonate additions to produce Ca0.9Gd0.1MnO3 pellets without the usual delamination problems occurring during the compaction process. In order to demonstrate the relevant effects, several samples with different amounts of potassium carbonate (0–15 wt%) have been prepared. The results showed that potassium additions significantly facilitate the compaction procedure, while also improving the thermoelectric performances. The results also highlight the importance of porosity control for improving ZT, by decreasing the thermal conductivity without reduction of the electrical performance. The highest ZT values were observed for the samples processed at 15 wt% of potassium carbonate addition, exhibiting an improvement at least 30% at 800 °C when compared to the pure samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Kabir R, Tian R (2015) Role of Bi doping in thermoelectric properties of CaMnO3. J Alloy Compd 628:347–351

    Article  CAS  Google Scholar 

  2. Zhang FP, Lu QM, Zhang X, Zhang JX (2011) First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide. J Alloy Compd 509:542–545. https://doi.org/10.1016/j.jallcom.2010.09.102

    Article  CAS  Google Scholar 

  3. Wang H, Su W, Liu J, Wang C (2016) Recent development of n-type perovskite thermoelectrics. J Materiom 2:225–236. https://doi.org/10.1016/j.jmat.2016.06.005

    Article  Google Scholar 

  4. Flahaut D, Mihara T (2006) Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system. J Appl Phys 100:84911–84914

    Article  Google Scholar 

  5. Wang Y, Sui Y (2009) High temperature thermoelectric response of electron-doped CaMnO3. Chem Mater 21:4653–4660

    Article  CAS  Google Scholar 

  6. Sotelo A, Torres M, Madre M, Diez J (2017) Effect of synthesis process on the densification, microstructure, and electrical properties of Ca0.9Yb0.1MnO3 ceramics. Int J Appl Ceram Technol 14:1190–1196. https://doi.org/10.1111/ijac.12711

    Article  CAS  Google Scholar 

  7. Milak PC, Minatto FD, De Noni A Jr, Montedo ORK (2015) Wear performance of alumina-based ceramics—a review of the influence of microstructure on erosive wear. Cerâmica 61:88–103. https://doi.org/10.1590/0366-69132015613571871

    Article  Google Scholar 

  8. Mouyane M, Itaalit B, Bernard J, Houivet D, Noudem JG (2014) Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides. Powder Technol 264:71–77. https://doi.org/10.1016/j.powtec.2014.05.022

    Article  CAS  Google Scholar 

  9. Taktaka R, Bakloutib S, Bouaziza J (2011) Effect of binders on microstructural and mechanical properties of sintered alumina. Mater Charact 62:912–916

    Article  Google Scholar 

  10. Melo Jorge ME, Correia dos Santos A, Nunes MR (2001) Effects of synthesis method on stoichiometry, structure and electrical conductivity of CaMnO3. Int J Inorg Mater 3:915–921

    Article  Google Scholar 

  11. http://www.chemicalbook.com/ChemicalProductProperty_EN_CB4853879.htm

  12. Sotelo A, Costa FM, Ferreira NM, Kovalevsky A, Ferro MC, Amaral VS, Amaral JS, Rasekh Sh, Torres MA, Madre MA, Diez JC (2016) Tailoring Ca3Co4O9 microstructure and performances using a transient liquid phase sintering additive. J Eur Ceram Soc 36:1025–1032. https://doi.org/10.1016/j.jeurceramsoc.2015.11.024

    Article  CAS  Google Scholar 

  13. https://pubchem.ncbi.nlm.nih.gov/compound/calcium_carbonate#section=Boiling-Point. Last visit March 2018

  14. Li C, Chen Q, Yan Y, Li Y, Zhao Y (2018) High-temperature thermoelectric properties of Ca0.92La0.04RE0.04MnO3 (RE = Sm, Dy and Yb) prepared by coprecipitation. Mater Res Express 5:25510

    Article  Google Scholar 

  15. Reimann T, Topfer J (2017) Thermoelectric properties of Gd/W double substituted calcium manganite. J Alloys Compd 699:788–795

    Article  CAS  Google Scholar 

  16. Rosić M, Kljajević LJ, Jordanov D, Stoiljković M, Kusigerski V, Spasojević V, Matović B (2015) Effects of sintering on the structural, microstructural and magnetic properties of nanoparticle manganite Ca1-xGdxMnO3 (x = 0.05; 0.1; 0.15; 0.2). Ceram Int 41:14964–14972. https://doi.org/10.1016/j.ceramint.2015.08.041

    Article  CAS  Google Scholar 

  17. Soleymani M, Moheb A, Joudaki E (2009) High surface area nano-sized La0.6Ca0.4MnO3 perovskite powder prepared by low temperature pyrolysis of a modified citrate gel. Eur J Chem 7(2009):809–817. https://doi.org/10.2478/s11532-009-0083-2

    Article  CAS  Google Scholar 

  18. Noorsyakirah A, Mazlan M, Afian OM, Aswad MA, Jabir SM, Nurazilah MZ, Afiq NHM, Bakar M, Nizam AJM, Zahid OA, Bakri MHM (2016) Application of potassium carbonate as space holder for metal injection molding process of open pore copper foam. Proc Chem 19:552–557. https://doi.org/10.1016/j.proche.2016.03.052

    Article  CAS  Google Scholar 

  19. Wang Y, Sui Y, Wang X, Su W, Liu X, Fan HJ (2010) Thermal conductivity of electron-doped CaMnO3 perovskites: local lattice distortions and optical phonon thermal excitation. Acta Mater 58:6306–6316. https://doi.org/10.1016/j.actamat.2010.07.052

    Article  CAS  Google Scholar 

  20. Baranovskiy A, Graff A, Klose J, Mayer J, Amouyal Y (2018) On the origin of vibrational properties of calcium manganate based thermoelectric compounds. Nano Energy. https://doi.org/10.1016/j.nanoen.2018.02.054

    Article  Google Scholar 

  21. Sotelo A, Depriester M, Torres MA, Sahraoui AH, Madre MA, Diez JC (2018) Effect of simultaneous K, and Yb substitution for Ca on the microstructural and thermoelectric characteristics of CaMnO3 ceramics. Ceram Int. https://doi.org/10.1016/j.ceramint.2018.04.071

    Article  Google Scholar 

  22. Noudem JG, Kenfaui D, Quetel-Weben S, Sanmathi CS, Retoux R, Gomina M (2011) Spark plasma sintering of n-Type thermoelectric Ca0.95Sm0.05MnO3. J Amer Ceram Soc. 94:2608–2612

    Article  CAS  Google Scholar 

  23. Quetel-Weben S, Retoux R, Noudem JG (2013) Thermoelectric Ca0.9Yb0.1MnO3 − δ grain growth controlled by spark plasma sintering. J Eur Ceram Soc 33:1755–1762

    Article  CAS  Google Scholar 

  24. Kabir R, Wang D, Zhang T, Tian R, Donelson R, Tan TT, Li S (2014) Tunable thermoelectric properties of Ca0.9Yb0.1MnO3 through controlling the particle size via ball mill processing. Ceram Int 40:16701–16706

    Article  CAS  Google Scholar 

  25. Wang H, Wang C (2012) Synthesis of Dy doped Yb0.1Ca0.9MnO3 ceramics with a high relative density and their thermoelectric properties. Mater Res Bull 47:2252–2256

    Article  CAS  Google Scholar 

  26. Zhu Y, Wang C, Wang H, Su W, Liu J, Li J (2014) Influence of Dy/Bi dual doping on thermoelectric performance of CaMnO3 ceramics. Mater Chem Phys 144:385–389

    Article  CAS  Google Scholar 

  27. Park JW, Kwak DH, Yoon SH, Choi SC (2009) Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J Alloy Compd 487:550–555. https://doi.org/10.1016/j.jallcom.2009.08.012

    Article  CAS  Google Scholar 

  28. Molinari M, Tompsett DA, Parker SC, Azoughb F, Freerb R (2014) Structural, electronic and thermoelectric behaviour of CaMnO3 and CaMnO(3-δ). J Mater Chem A 2:14109. https://doi.org/10.1039/c4ta01514b

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.M. Ferreira, A.V. Kovalevsky and FM Costa acknowledge the support of i3 N (UID/CTM/50025/2013) and CICECO-Aveiro Institute of Materials (UID/CTM/50011/2013), financed by FCT/MEC and FEDER under the PT2020 Partnership Agreement. The support from FCT (Portugal) grant SFRH/BPD/111460/2015, and the funding that allowed a scientific mission to Zaragoza to perform the present work, is also acknowledged. A. Sotelo, M. A. Madre, J. C. Diez, and M. A. Torres acknowledge the Gobierno de Aragon (Grupo de Investigacion T 54-17 R), and the MINECO-FEDER (MAT2017-82183-C3-1-R) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, N.M., Ferro, M.C., Sarabando, A.R. et al. Improvement of thermoelectric properties of Ca0.9Gd0.1MnO3 by powder engineering through K2CO3 additions. J Mater Sci 54, 3252–3261 (2019). https://doi.org/10.1007/s10853-018-3058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3058-x

Keywords

Navigation