Skip to main content
Log in

Size, structure, and luminescence of Nd2Zr2O7 nanoparticles by molten salt synthesis

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pyrochlore materials with novel properties are in demand with multifunctional applications such as optoelectronics, scintillator materials, and theranostics. Many reports have already indicated the importance of the synthesis technique for Nd2Zr2O7 (NZO) nanoparticles (NPs); however, no explanation has been provided for the reason behind the nature of its phase selectivity. Here, we have explored the structural and optical properties of the NZO NPs synthesized by a molten salt synthesis method. We have synthesized size-tunable NZO NPs and correlated the particle size with their structural behavior and optical performance. All NZO NPs are stabilized in defect fluorite phase. Neutron diffraction provided insight on the behavior of oxygen in the presence of heavy atoms. We have collected bright amalgam of blue and green emission on UV irradiation due to the presence of oxygen vacancies from these NPs. We have carried out in situ XRD and Raman investigations to observe the temperature-induced phase transformation in a controlled argon environment. Interestingly, we have not observed phase change for the molten salt synthesized fluorite NZO NPs; however, we observed phase transformation from a precursor stage to pyrochlore phase by in situ XRD directly. These observations provide a new strategy to synthesize nanomaterials phase-selectively for a variety of applications in materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chun J, Reuvekamp PG, Chen D, Lin C, Kremer RK (2015) Promising high-k dielectric permittivity of pyrochlore-type crystals of Nd2Hf2O7. J Mater Chem C 3:491–494

    Article  CAS  Google Scholar 

  2. Zhang Y, Xie M, Zhou F, Cui X, Lei X, Song X, An S (2014) Low thermal conductivity in La2Zr2O7 pyrochlore with A-site partially substituted with equimolar Yb2O3 and Er2O3. Ceram Int 40:9151–9157

    Article  CAS  Google Scholar 

  3. Shlyakhtina AV, Pigalskiy KS, Belov DA, Lyskov NV, Kharitonova EP, Kolbanev IV, Borunova AB, Karyagina OK, Sadovskaya EM, Sadykov VA, Eremeev NF (2018) Proton and oxygen ion conductivity in the pyrochlore/fluorite family of Ln2−xCaxScMO7−δ (Ln = La, Sm, Ho, Yb; M = Nb, Ta; x = 0, 0.05, 0.1) niobates and tantalates. Dalton Trans 47:2376–2392

    Article  CAS  Google Scholar 

  4. Lu X, Shu X, Shao D, Chen S, Zhang H, Yuan X, Chi F (2018) Radiation stability of Gd2Zr2O7 and Nd2Ce2O7 ceramics as nuclear waste forms. Ceram Int 44:760–765

    Article  CAS  Google Scholar 

  5. Mustafa GM, Atiq S, Abbas SK, Riaz S, Naseem S (2018) Tunable structural and electrical impedance properties of pyrochlores based Nd doped lanthanum zirconate nanoparticles for capacitive applications. Ceram Int 44:2170–2177

    Article  CAS  Google Scholar 

  6. Cepeda-Sánchez NM, Díaz-Guillén JA, Maczka M, Amador U, Fuentes AF (2017) Mechanochemical synthesis, crystal structure and ion conduction in the Gd2Hf2−xTixO7 system. J Mater Sci 52(20):11933–11946. https://doi.org/10.1007/s10853-017-1037-2

    Article  CAS  Google Scholar 

  7. Shamblin J, Tracy CL, Palomares RI, O’Quinn EC, Ewing RC, Neuefeind J, Feygenson M, Behrens J, Trautmann C, Lang M (2018) Similar local order in disordered fluorite and aperiodic pyrochlore structures. Acta Mater 144:60–67

    Article  CAS  Google Scholar 

  8. Gupta SK, Zuniga JP, Abdou M, Mao Y (2018) Thermal annealing effects on La2Hf2O7:Eu3+ nanoparticles: A curious case study of structural evolution and site-specific photo- and radio-luminescence. Inorg Chem Front 5:2508–2521

    Article  CAS  Google Scholar 

  9. Gupta SK, Zuniga JP, Ghosh PS, Abdou M, Mao Y (2018) Correlating structure and luminescence properties of undoped and La2Hf2O7:Eu3+NPs prepared with different coprecipitating pH Values through experimental and theoretical studies. Inorg Chem Front 57:11815–11830

    Article  CAS  Google Scholar 

  10. Abdou M, Gupta SK, Zuniga JP, Mao Y (2018) On structure and phase transformation of uranium doped La2Hf2O7 nanoparticles as an efficient nuclear waste host. Mater Chem Front 2(12):2201–2211

    Article  CAS  Google Scholar 

  11. Zuniga JP, Gupta SK, Pokhrel M, Mao Y (2018) Exploring the optical properties of La2Hf2O7:Pr3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications. New J Chem 42:9381–9392

    Article  CAS  Google Scholar 

  12. Gupta SK, Ghosh P, Reghukumar C, Pathak N, Kadam R (2016) Experimental and theoretical approach to account for green luminescence from Gd2Zr2O7 pyrochlore: exploring the site occupancy and origin of host-dopant energy transfer in Gd2Zr2O7:Eu3+. RSC Adv 6:44908–44920

    Article  CAS  Google Scholar 

  13. Gupta SK, Reghukumar C, Kadam R (2016) Eu3+ local site analysis and emission characteristics of novel Nd2Zr2O7: Eu phosphor: insight into the effect of europium concentration on its photoluminescence properties. RSC Adv 6:53614–53624

    Article  CAS  Google Scholar 

  14. Gupta SK, Reghukumar C, Keskar M, Kadam R (2016) Revealing the oxidation number and local coordination of uranium in Nd2Zr2O7 pyrochlore: a photoluminescence study. J Lumin 177:166–171

    Article  CAS  Google Scholar 

  15. Gupta SK, Reghukumar C, Pathak N, Sudarshan K, Tyagi D, Mohapatra M, Pujari P, Kadam R (2017) Speciation of uranium and doping induced defects in Gd1. 98U0. 02Zr2O7: photoluminescence, X-ray photoelectron and positron annihilation lifetime spectroscopy. Chem Phys Lett 669:245–250

    Article  CAS  Google Scholar 

  16. Feng T, Clarke DR, Jiang D, Xia J, Shi J (2011) Neodymium zirconate (Nd2Zr2O7) transparent ceramics as a solid state laser material. Appl Phys Lett 98(15):151105

    Article  Google Scholar 

  17. Ai L, Wang Z, Gao Y, Cui C, Wang B, Liu W, Wang L (2019) Effect of surface and bulk palladium doping on the catalytic activity of La2Sn2O7 pyrochlore oxides for diesel soot oxidation. J Mater Sci 54(6):4495–4510. https://doi.org/10.1007/s10853-018-3160-0

    Article  CAS  Google Scholar 

  18. Zuniga JP, Gupta SK, Pokhrel M, Mao Y (2018) Exploring the optical properties of La2Hf2O7:Pr3+ nanoparticles under UV and X-ray excitation for potential lighting and scintillating applications. New J Chem 42(12):9381–9392

    Article  CAS  Google Scholar 

  19. Gupta SK, Sudarshan K, Ghosh PS, Srivastava AP, Bevara S, Pujari PK, Kadam RM (2016) Role of various defects in the photoluminescence characteristics of nanocrystalline Nd2Zr2O7: an investigation through spectroscopic and DFT calculations. J Mater Chem C 4(22):4988–5000

    Article  CAS  Google Scholar 

  20. Zinatloo-Ajabshir S, Salavati-Niasari M (2017) Photo-catalytic degradation of erythrosine and eriochrome black T dyes using Nd2Zr2O7 nanostructures prepared by a modified Pechini approach. Sep Purif Technol 179:77–85

    Article  CAS  Google Scholar 

  21. Lutique S, Konings RJM, Rondinella VV, Somers J, Wiss T (2003) The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlore-based inert matrix fuel. J Alloy Compd 352:1–5

    Article  CAS  Google Scholar 

  22. Guruciaga PC, Tarzia M, Ferreyra MV, Cugliandolo LF, Grigera SA, Borzi RA (2016) Field-tuned, order by disorder in frustrated ising magnets with antiferromagnetic interactions. Phys Rev Lett 117:167203

    Article  CAS  Google Scholar 

  23. Wu J, Wei X, Padture NP, Klemens PG, Gell M, García E, Miranzo P, Osendi MI (2002) Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc 85:3031–3035

    Article  CAS  Google Scholar 

  24. Payne JL, Tucker MG, Evans IR (2013) From fluorite to pyrochlore: characterisation of local and average structure of neodymium zirconate, Nd2Zr2O7. J Solid State Chem 205:29–34

    Article  CAS  Google Scholar 

  25. Zhao FA, Xiao HY, Bai XM, Liu ZJ, Zu XT (2018) Effects of Nd doping on the mechanical properties and electronic structures of Gd2Zr2O7: a first-principles-based study. J Mater Sci 53(24):16423–16438. https://doi.org/10.1007/s10853-018-2784-4

    Article  CAS  Google Scholar 

  26. Cepeda-Sánchez NM, Díaz-Guillén JA, Maczka M, Amador U, Fuentes AF (2018) Cations size mismatch versus bonding characteristics: synthesis, structure and oxygen ion conducting properties of pyrochlore-type lanthanide hafnates. J Mater Sci 53(19):13513–13529. https://doi.org/10.1007/s10853-018-2402-5

    Article  CAS  Google Scholar 

  27. Gupta SK, Abdou M, Ghosh PS, Zuniga JP, Mao Y (2019) Thermally induced disorder-order phase transition of Gd2Hf2O7:Eu3+ nanoparticles and its implication on photo- and radioluminescence. ACS Omega 4(2):2779–2791

    Article  CAS  Google Scholar 

  28. Jiang C, Stanek CR, Sickafus KE, Uberuaga BP (2009) First-principles prediction of disordering tendencies in pyrochlore oxides. Phys Rev B 79(10):104203

    Article  Google Scholar 

  29. Li Y, Kowalski PM, Beridze G, Birnie AR, Finkeldei S, Bosbach D (2015) Defect formation energies in A2B2O7 pyrochlores. Scripta Mater 107:18–21

    Article  CAS  Google Scholar 

  30. Xiao HY, Zhang FX, Gao F, Lang M, Ewing RC, Weber WJ (2010) Zirconate pyrochlores under high pressure. Phys Chem Chem Phys 12(39):12472–12477

    Article  CAS  Google Scholar 

  31. Payne JL, Tucker MG, Evans IR (2013) From fluorite to pyrochlore: characterisation of local and average structure of neodymium zirconate, Nd2Zr2O7. J Solid State Chem 205:29–34

    Article  CAS  Google Scholar 

  32. Qing Q, Shu X, Shao D, Zhang H, Chi F, Lu X (2018) Irradiation response of Nd2Zr2O7 under heavy ions irradiation. J Eur Ceram Soc 38(4):2068–2073

    Article  CAS  Google Scholar 

  33. Kong L, Karatchevtseva I, Aughterson RD, Davis J, Zhang Y, Lumpkin GR, Triani G (2015) New pathway for the preparation of pyrochlore Nd2Zr2O7 nanoparticles. Ceram Int 41(6):7618–7625

    Article  CAS  Google Scholar 

  34. Bhattacharya AK, Hartridge A, Mallick KK, Woodhead JL (1994) Preparation and characterization of Ln2Zr2O7 microspheres by an inorganic sol–gel route. J Mater Sci 29:6076–6078. https://doi.org/10.1007/BF00354544

    Article  CAS  Google Scholar 

  35. Lee YH, Sheu HS, Kao HCI (2010) Preparation and characterization of Nd2Zr2O7 nanocrystals by a polymeric citrate precursor method. Mater Chem Phys 124:145–149

    Article  CAS  Google Scholar 

  36. Kong L, Karatchevtseva I, Gregg DJ, Blackford MG, Holmes R, Triani G (2013) Gd2Zr2O7 and Nd2Zr2O7 pyrochlore prepared by aqueous chemical synthesis. J Eur Ceram Soc 33(15):3273–3285

    Article  CAS  Google Scholar 

  37. Kaliyaperumal C, Sankarakumar A, Palanisamy J, Paramasivam T (2018) Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7. Mater Lett 228:493–496

    Article  CAS  Google Scholar 

  38. Zhang A, Lü M, Yang Z, Zhou G, Zhou Y (2008) Systematic research on RE2Zr2O7 (RE = La, Nd, Eu and Y) nanocrystals: preparation, structure and photoluminescence characterization. Solid State Sci 10:74–81

    Article  CAS  Google Scholar 

  39. Rao KK, Banu T, Vithal M, Swamy GYSK, Kumar KR (2002) Preparation and characterization of bulk and nano particles of La2Zr2O7 and Nd2Zr2O7 by sol–gel method. Mater Lett 54:205–210

    Article  Google Scholar 

  40. Zuniga JP, Abdou M, Gupta SK, Mao Y (2018) Molten-salt synthesis of complex metal oxide nanoparticles. JoVE 140:e58482

    Google Scholar 

  41. Castro AA, Morales F, Romero M, Conde- Gallardo A, Escamilla R (2018) Effect of Co partial substitution on the valence state of Ru in the Gd2−xCoxRu2O7 pyrochlore. J Mater Sci 53(11):8067–8073. https://doi.org/10.1007/s10853-018-2162-2

    Article  CAS  Google Scholar 

  42. Zuniga JP, Gupta SK, Abdou M, Mao Y (2018) Effect of molten salt synthesis processing duration on the photo- and radioluminescence of UV-, visible-, and X-ray-excitable La2Hf2O7:Eu3+ nanoparticles. ACS Omega 3(7):7757–7770

    Article  CAS  Google Scholar 

  43. Neuefeind J, Feygenson M, Carruth J, Hoffmann R, Chipley KK (2012) The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source SNS. Nucl Instrum Methods Phys Res, Sect B 287:68–75

    Article  CAS  Google Scholar 

  44. Sayed FN, Grover V, Bhattacharyya K, Jain D, Arya A, Pillai C, Tyagi A (2011) Sm2−xDyxZr2O7 pyrochlores: probing order–disorder dynamics and multifunctionality. Inorg Chem 50:2354–2365

    Article  CAS  Google Scholar 

  45. Turner KM, Rittman DR, Heymach RA, Tracy CL, Turner ML, Fuentes AF, Mao WL, Ewing RC (2017) Pressure-induced structural modifications of rare-earth hafnate pyrochlore. J Phys: Condens Matter 29:255401

    Google Scholar 

  46. Subramanian M, Aravamudan G, Rao GS (1983) Oxide pyrochlores—a review. Prog Solid Sate Chem 15:55–143

    Article  CAS  Google Scholar 

  47. Mahesh SK, Rao PP, Thomas M, Francis TL, Koshy P (2013) Influence of cation substitution and activator site exchange on the photoluminescence properties of Eu3+-doped quaternary pyrochlore oxides. Inorg Chem 52(23):13304–13313

    Article  CAS  Google Scholar 

  48. Turner KM, Rittman DR, Heymach RA, Tracy CL, Turner ML, Fuentes AF, Mao WL, Ewing RC (2017) Pressure-induced structural modifications of rare-earth hafnate pyrochlore. J Phys: Condens Matter 29(25):255401

    Google Scholar 

  49. Zinatloo-Ajabshir S, Salavati-Niasari M (2017) Facile synthesis of nanocrystalline neodymium zirconate for highly efficient photodegradation of organic dyes. J Mol Liq 243:219–226

    Article  CAS  Google Scholar 

  50. Klee WE, Weitz G (1969) Infrared spectra of ordered and disordered pyrochlore-type compounds in the series RE2Ti2O7, RE2Zr2O7 and RE2Hf2O7. J Inorg Nucl Chem 31:2367–2372

    Article  CAS  Google Scholar 

  51. Hagiwara T, Nomura K, Yamamura H (2014) Relationship between crystal structure and oxide-ion conduction in Nd2Zr2O7 and La2Zr2O7 deduced by high-temperature neutron diffraction. Solid State Ionics 262:551–554

    Article  CAS  Google Scholar 

  52. Heremans C, Wuensch BJ, Stalick JK, Prince E (1995) Fast-ion conducting Y2(ZryTi1−y)2O7 pyrochlores: neutron Rietveld analysis of disorder induced by Zr substitution. J Solid State Chem 117(1):108–121

    Article  CAS  Google Scholar 

  53. Richardson RP (2016) The thermoresponsive behaviour of selected rare-earth hafnate, zirconate, and titanate compounds. University of Witwatersrand, pp 1–162

  54. Hudak BM, Depner SW, Waetzig GR, Talapatra A, Arroyave R, Banerjee S, Guiton BS (2017) Real-time atomistic observation of structural phase transformations in individual hafnia nanorods. Nat Commun 8:15316

    Article  CAS  Google Scholar 

  55. Longo VM, Cavalcante LS, Figueiredo ATD, Santos LPS, Longo E, Varela JA, Sambrano JR, Paskocimas CA, Vicente FSD, Hernandes AC (2007) Highly intense violet-blue light emission at room temperature in structurally disordered SrZrO3 powders. Appl Phys Lett 90:091906

    Article  Google Scholar 

  56. Gupta SK, Sudarshan K, Ghosh P, Srivastava A, Bevara S, Pujari P, Kadam R (2016) Role of various defects in the photoluminescence characteristics of nanocrystalline Nd2Zr2O7: an investigation through spectroscopic and DFT calculations. J Mater Chem C 4:4988–5000

    Article  CAS  Google Scholar 

  57. Pathak N, Ghosh PS, Gupta SK, Mukherjee S, Kadam RM, Arya A (2016) An insight into the various defects-induced emission in MgAl2O4 and their tunability with phase behavior: combined experimental and theoretical approach. J Phys Chem C 120(7):4016–4031

    Article  CAS  Google Scholar 

  58. Gupta SK, Ghosh PS, Pathak N, Arya A, Natarajan V (2014) Understanding the local environment of Sm3+ in doped SrZrO3 and energy transfer mechanism using time-resolved luminescence: a combined theoretical and experimental approach. RSC Adv 4:29202–29215

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the financial support by the National Science Foundation under CHE (#1710160), DMR (#1523577), DMR (#1455154, BSG), OIA (#1355438, partial salary support for MPT), and NASA Kentucky (NNX15AK28A, MPT). The Department of Chemistry at the University of Texas Rio Grande Valley is grateful to the Robert A. Welch Foundation (Grant No. BX-0048). SKG thanks the United States-India Education Foundation (India) and the Institute of International Education (USA) for his Fulbright Nehru Postdoctoral Fellowship (# 2268/FNPDR/2017). In situ XRD and Raman measurements, TEM/STEM and EDS characterization were conducted at the Center for Nanophase Materials Sciences, and ND data were taken at the Neutron Science Directorate, Oak Ridge National Laboratory, which is a DOE Office of Science User Facility. We also thank Dr. J. K. Keum and Dr. J. C. Neuefeind for technical assistance on the in situ XRD and ND measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanbing Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuniga, J.P., Gupta, S.K., Abdou, M. et al. Size, structure, and luminescence of Nd2Zr2O7 nanoparticles by molten salt synthesis. J Mater Sci 54, 12411–12423 (2019). https://doi.org/10.1007/s10853-019-03745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03745-9

Navigation