Skip to main content

Advertisement

Log in

Anodization growth of TiO2 nanotubes on Ti–35Nb–7Zr–5Ta alloy: effects of anodization time, strain hardening, and crystallographic texture

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titanium and its alloys are the most suitable metallic materials available for the fabrication of medical implants. Their biocompatibility can be improved by the growth of TiO2 nanotubes on their surface by a simple anodization process. This work involved an investigation into the anodization behavior of Ti–35Nb–7Zr–5Ta (TNZT) alloy, focusing on the effect of processing conditions (anodization time and type of electrolyte), previous strain hardening, and crystallographic texture of the substrate. Studies about the growth of TiO2 nanotubes on β-type titanium alloys, as the TNZT alloy, are rare in the literature. The TNZT alloy proved to be an excellent substrate for the growth of TiO2 nanotubes, resulting in threefold longer nanotubes than those obtained on a commercially pure (CP) Ti substrate. Moreover, TiO2 nanowires grew after 6 h of anodization in an organic electrolyte, which could not be achieved using the CP-Ti substrate. Samples with different crystallographic textures displayed similar nanotube morphology and only slight differences in grain length, indicating that grain orientation played only a minor role in the growth kinetics. Lastly, the crystallization of nanotubes at 450 °C did not alter their morphology, but caused complete detachment of the TiO2 nanotubes at 700 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Lutjering G, Willians JC (2007) Titanium (engineering materials and processes). Springer, Berlin

    Google Scholar 

  2. Ridzwan MIZ, Shuib S, Hassan AY, Shokri AA, Mohammad Ibrahim MN (2007) Problem of stress shielding and improvement to the hip implant designs: a review. J Med Sci 7:460–467

    Article  Google Scholar 

  3. Qazi JI, Rack HJ (2005) Metastable beta titanium alloys for orthopedic applications. Adv Eng Mater 7:993–998. https://doi.org/10.1002/adem.200500060

    Article  Google Scholar 

  4. Kopova I, Stráský J, Harcuba P, Landa M, Janeček M, Bačákova L (2016) Newly developed Ti–Nb–Zr–Ta–Si–Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. Mater Sci Eng C 60:230–238. https://doi.org/10.1016/j.msec.2015.11.043

    Article  Google Scholar 

  5. Patil PS, Bhongade ML (2016) Dental implant surface modifications: a review. J Dent Med Sci 15:132–141. https://doi.org/10.9790/0853-151003132141

    Google Scholar 

  6. Balla VK, Soderlind J, Bose S, Bandyopadhyay A (2014) Microstructure, mechanical and wear properties of laser surface melted Ti6Al4 V alloy. J Mech Behav Biomed Mater 32:335–344. https://doi.org/10.1016/j.jmbbm.2013.12.001

    Article  Google Scholar 

  7. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11:3–18. https://doi.org/10.1016/j.cossms.2007.08.004

    Article  Google Scholar 

  8. Lee M, Kim T, Bae C, Shin H, Kim J (2010) Fabrication and applications of metal-oxide nanotubes. JOM 62:44–49

    Article  Google Scholar 

  9. Duvvuru MK, Han W, Chowdhury PR, Vahabzadeh S, Sciammarella F, Elsawa SF (2019) Bone marrow stromal cells interaction with titanium; Effects of composition and surface modification. PLoS ONE 14:e0216087. https://doi.org/10.1371/journal.pone.0216087

    Article  Google Scholar 

  10. Barjaktarević DR, Djokić VR, Damnjanović ID, Rakin MP (2018) Nanotubular oxide layers formed on the Ti-based implants surfaces-application and possible damages: a review. Metall Mater Eng. https://doi.org/10.30544/401

    Google Scholar 

  11. Li T, Gulati K, Wang N, Zhang Z, Ivanovski S (2018) Bridging the gap: optimized fabrication of robust titania nanostructures on complex implant geometries towards clinical translation. J Colloid Interface Sci 529:452–463. https://doi.org/10.1016/j.jcis.2018.06.004

    Article  Google Scholar 

  12. Contri Campanelli L, Pereira Sergio Carvalho, da Silva P, Camarinho Oliveira NT, Bolfarini C (2017) Effect of the modification by titanium dioxide nanotubes with different structures on the fatigue response of Ti grade 2. Mater Res 20:120–124. https://doi.org/10.1590/1980-5373-mr-2016-0681

    Article  Google Scholar 

  13. Low IM, Yam FK, Pang WK (2012) In-situ diffraction studies on the crystallization and crystal growth in anodized TiO2 nanofibres. Mater Lett 87:150–152. https://doi.org/10.1016/j.matlet.2012.08.001

    Article  Google Scholar 

  14. Allam NK, Grimes CA (2008) Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Sol Energy Mater Sol Cells 92:1468–1475. https://doi.org/10.1016/j.solmat.2008.06.007

    Article  Google Scholar 

  15. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334. https://doi.org/10.1557/JMR.2001.0457

    Article  Google Scholar 

  16. Raja KS, Misra M, Paramguru K (2005) Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochim Acta 51:154–165. https://doi.org/10.1016/J.ELECTACTA.2005.04.011

    Article  Google Scholar 

  17. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R (2013) A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater Sci Eng R Rep 74:377–406. https://doi.org/10.1016/j.mser.2013.10.001

    Article  Google Scholar 

  18. Tan AW, Pingguan-Murphy B, Ahmad R, Akbar SA (2013) Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review. J Mater Sci 48:8337–8353. https://doi.org/10.1007/s10853-013-7659-0

    Article  Google Scholar 

  19. Lim JH, Choi J (2007) Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. Small 3:1504–1507. https://doi.org/10.1002/smll.200700114

    Article  Google Scholar 

  20. Ismail S, Lockman Z, Ahmad ZA (2012) Crystallization of TiO2 nanotubes arrays grown by anodization of Ti in organic electrolyte. Adv Mater Res 620:412–417. https://doi.org/10.4028/www.scientific.net/AMR.620.412

    Article  Google Scholar 

  21. Uchida M, Kim H-M, Kokubo T, Fujibayashi S, Nakamura T (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res 64A:164–170. https://doi.org/10.1002/jbm.a.10414

    Article  Google Scholar 

  22. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M (2015) Why is anatase a better photocatalyst than rutile? Model studies on epitaxial TiO2 films. Sci Rep 4:4043. https://doi.org/10.1038/srep04043

    Article  Google Scholar 

  23. Regonini D, Satka A, Jaroenworaluck A, Allsopp DWE, Bowen CR, Stevens R (2012) Factors influencing surface morphology of anodized TiO2 nanotubes. Electrochim Acta 74:244–253. https://doi.org/10.1016/j.electacta.2012.04.076

    Article  Google Scholar 

  24. Sopha H, Hromadko L, Nechvilova K, Macak JM (2015) Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes. J Electroanal Chem 759:122–128. https://doi.org/10.1016/j.jelechem.2015.11.002

    Article  Google Scholar 

  25. Sulka GD, Kapusta-Kołodziej J, Brzózka A, Jaskuła M (2013) Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochim Acta 104:526–535. https://doi.org/10.1016/j.electacta.2012.12.121

    Article  Google Scholar 

  26. Butail G, Ganesan PG, Raddiar M, Teki R, Ravishankar N, Duquette DJ, Ramanath G (2011) Kinetics of titania nanotube formation by anodization of titanium films. Thin Solid Films 519:1821–1824. https://doi.org/10.1016/j.tsf.2010.10.004

    Article  Google Scholar 

  27. Apolinário A, Sousa CT, Ventura J, Costa JD, Leitão DC, Moreira JM, Sousa JB, Andrade L, Mendes AM, Araújo JP (2014) The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: a detailed study of the growth mechanism. J Mater Chem A 2:9067–9078. https://doi.org/10.1039/C4TA00871E

    Article  Google Scholar 

  28. Shin Y, Lee S (2008) Self-organized regular arrays of anodic TiO2 nanotubes. Nano Lett 8:3171–3173. https://doi.org/10.1021/nl801422w

    Article  Google Scholar 

  29. Leonardi S, Russo V, Li Bassi A, Di Fonzo F, Murray TM, Efstathiadis H, Agnoli A, Kunze-Liebhäuser J (2015) TiO2 nanotubes: interdependence of substrate grain orientation and growth rate. ACS Appl Mater Interfaces 7:1662–1668. https://doi.org/10.1021/am507181p

    Article  Google Scholar 

  30. Crawford GA, Chawla N (2009) Tailoring TiO2 nanotube growth during anodic oxidation by crystallographic orientation of Ti. Scr Mater 60:874–877. https://doi.org/10.1016/j.scriptamat.2009.01.043

    Article  Google Scholar 

  31. Hielscher R, Schaeben H (2008) A novel pole figure inversion method: specification of the MTEX algorithm. J Appl Crystallogr 41:1024–1037. https://doi.org/10.1107/S0021889808030112

    Article  Google Scholar 

  32. Ozkan S, Mazare A, Schmuki P (2018) Critical parameters and factors in the formation of spaced TiO2 nanotubes by self-organizing anodization. Electrochim Acta 268:435–447. https://doi.org/10.1016/j.electacta.2018.02.120

    Article  Google Scholar 

  33. Ozkan S, Nguyen NT, Mazare A, Hahn R, Cerri I, Schmuki P (2017) Fast growth of TiO2 nanotube arrays with controlled tube spacing based on a self-ordering process at two different scales. Electrochem Commun 77:98–102. https://doi.org/10.1016/j.elecom.2017.03.007

    Article  Google Scholar 

  34. Berger S, Hahn R, Roy P, Schmuki P (2010) Self-organized TiO2 nanotubes: factors affecting their morphology and properties. Phys status solidi 247:2424–2435. https://doi.org/10.1002/pssb.201046373

    Article  Google Scholar 

  35. Conradie F, Treurnicht N, Sacks N (2014) Alpha case characterization of hot rolled titanium. Adv Mater Res 1019:311–317. https://doi.org/10.4028/www.scientific.net/AMR.1019.311

    Article  Google Scholar 

  36. Peng W, Zeng W, Zhang Y, Shi C, Quan B, Wu J (2013) The effect of colored titanium oxides on the color change on the surface of Ti–5Al–5Mo–5V–1Cr–1Fe alloy. J Mater Eng Perform 22:2588–2593. https://doi.org/10.1007/s11665-013-0573-4

    Article  Google Scholar 

  37. Losertová M, Štefek O, Galajda M, Konečná K, Martynková GS, Barabaszová KČ (2019) Microstructure and electrochemical behavior of TiO2 nanotubes coated on titanium-based substrate before and after thermal treatment. J Nanosci Nanotechnol 19:2989–2996. https://doi.org/10.1166/jnn.2019.15859

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge LNNano/CNPEM (National Nanotechnology Laboratory of the National Center for Research on Energy and Materials) for providing access to its SEM facilities. This work was supported by the Brazilian research funding agency FAPESP (São Paulo Research Foundation) [Grant #2017/16715-0].

Author information

Authors and Affiliations

Authors

Contributions

LF is the main author, performed the experiments, and took the lead in writing the paper. MGM and AC contributed to the implementation of the research and to the interpretation of the results. RC designed and supervised the study and revised the manuscript.

Corresponding author

Correspondence to Leonardo Fanton.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanton, L., Cremasco, A., Mello, M.G. et al. Anodization growth of TiO2 nanotubes on Ti–35Nb–7Zr–5Ta alloy: effects of anodization time, strain hardening, and crystallographic texture. J Mater Sci 54, 13724–13739 (2019). https://doi.org/10.1007/s10853-019-03870-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03870-5

Navigation