Skip to main content
Log in

Hierarchical pore structure of zeolite/MCM obtained by supramolecular templating using ionic liquid (C16MI·Cl) as the structure-directing agent

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zeolites are microporous materials with tetrahedral three-dimensional structure; such structure allows the transfer of material through its pores, but small pores prejudice such transfer. One way to overcome these problems is the development of materials combining microporous and mesoporous structures. This study reports the synthesis at room temperature of hierarchical materials, ZSM-5/MCM-48, ZSM-35/MCM-48, ZSM-5/MCM-41 and ZSM-35/MCM-41, from ZSM-5 and ZSM-35 seeds, using ionic liquid (1-hexadecyl-3-methylimidazolium) as supramolecular template. Infrared spectroscopy and attenuated total reflectance analyses confirmed the formation of the materials through the presence of bands at 1220 and 1070 cm−1. SAXS analyses showed that most of the materials have surface fracture dimensions (3 ≤ α < 4), except the sample MCM 41/ZSM 5, having a mass fractal structure. Signals in the high-angle region correlated with XRD analysis, confirming the formation of the materials. TGA analysis shows that ionic liquid decomposition occurs at higher temperatures when the ionic liquid is within the material. Finally, the results obtained by textural analysis via N2 adsorption agreed with data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Moliner M, Martínez C, Corma A (2015) Multipore zeolites: synthesis and catalytic applications. Angew Chemie Int Ed 54:3560–3579. https://doi.org/10.1002/anie.201406344

    Article  CAS  Google Scholar 

  2. Feliczak-Guzik A (2018) Hierarchical zeolites: synthesis and catalytic properties. Microporous Mesoporous Mater 259:33–45. https://doi.org/10.1016/j.micromeso.2017.09.030

    Article  CAS  Google Scholar 

  3. Koshy N, Singh DN (2016) Fly ash zeolites for water treatment applications. J Environ Chem Eng 4:1460–1472. https://doi.org/10.1016/j.jece.2016.02.002

    Article  CAS  Google Scholar 

  4. Novak S (2018) Síntese de materiais Micro/Mesoporosos hierárquicos com estrutura MFI, Universidade Estadual de São Paulo (UNESP). http://hdl.handle.net/11449/153109. Accessed 15 July 2019

  5. Xia Y, Mokaya R (2004) On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials. J Mater Chem 14:863–870. https://doi.org/10.1039/b313389c

    Article  CAS  Google Scholar 

  6. Jia X, Khan W, Wu Z, Choi J, Yip ACK (2018) Modern synthesis strategies for hierarchical zeolites: bottom-up versus top-down strategies. Adv Powder Technol. https://doi.org/10.1016/j.apt.2018.12.014

    Article  Google Scholar 

  7. Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous zeolite single crystals. J Am Chem Soc 122:7116–7117. https://doi.org/10.1021/ja000744c

    Article  CAS  Google Scholar 

  8. Kloetstra KR, Zandbergen HW, Jansen JC, Van Bekkum H (1996) Overgrowth of mesoporous MCM-41 on faujasite. Microporous Mater 6:287–293. https://doi.org/10.1016/0927-6513(96)00036-3

    Article  CAS  Google Scholar 

  9. Liu Y, Zhang W, Pinnavaia TJ (2000) Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. J Am Chem Soc 122:8791–8792. https://doi.org/10.1021/ja001615z

    Article  CAS  Google Scholar 

  10. Gonçalves ML, Dimitrov LD, Jordão MH, Wallau M, Urquieta-González EA (2008) Synthesis of mesoporous ZSM-5 by crystallisation of aged gels in the presence of cetyltrimethylammonium cations. Catal Today 133–135:69–79. https://doi.org/10.1016/j.cattod.2007.12.108

    Article  CAS  Google Scholar 

  11. Shih PC, Wang JH, Mou CY (2004) Strongly acidic mesoporous aluminosilicates prepared from zeolite seeds: acylation of anisole with octanyl chloride. Catal Today 93–95:365–370. https://doi.org/10.1016/j.cattod.2004.06.025

    Article  CAS  Google Scholar 

  12. Prasomsri T, Jiao W, Weng SZ, Garcia Martinez J (2015) Mesostructured zeolites: bridging the gap between zeolites and MCM-41. Chem Commun 51:8900–8911. https://doi.org/10.1039/c4cc10391b

    Article  CAS  Google Scholar 

  13. J.C.V.W.J. Roth, J.S.B.S.B. Mccullen, The Synthesis and Properties of M 41S vartuli1998, 1 (1998) 97–119

  14. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chemie Int Ed 45:3216–3251. https://doi.org/10.1002/anie.200503075

    Article  CAS  Google Scholar 

  15. Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125:170–223. https://doi.org/10.1016/j.micromeso.2009.03.046

    Article  CAS  Google Scholar 

  16. Rogers RD, Seddon KR (2003) Seddon ionic liquids solvents of the future? Science 302:792–793

    Article  Google Scholar 

  17. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionische Flüssigkeiten für die Synthese funktioneller Nanopartikel und anderer anorganischer Nanostrukturen. Angew Chemie 116:5096–5100. https://doi.org/10.1002/ange.200460091

    Article  Google Scholar 

  18. Avellaneda RS, Ivanova S, Sanz O, Romero-Sarria F, Centeno MA, Odriozola JA (2009) Ionic liquid templated TiO2 nanoparticles as a support in gold environmental catalysis. Appl Catal B Environ 93:140–148. https://doi.org/10.1016/j.apcatb.2009.09.023

    Article  CAS  Google Scholar 

  19. Ismail AA, Mohamed RM, Fouad OA, Ibrahim IA (2006) Synthesis of nanosized ZSM-5 using different alumina sources. Cryst Res Technol 41:145–149. https://doi.org/10.1002/crat.200510546

    Article  CAS  Google Scholar 

  20. Byggningsbacka R, Kumar N, Lindfors LE (1998) Comparative study of the catalytic properties of ZSM-22 and ZSM-35/ferrierite zeolites in the skeletal isomerization of 1-butene. J Catal 178:611–620. https://doi.org/10.1006/jcat.1998.2174

    Article  CAS  Google Scholar 

  21. Yuan Z, Zhu X, Li M, Lu W, Li X, Zhang H (2016) A highly ion-selective zeolite flake layer on porous membranes for flow battery applications. Angew Chemie Int Ed 55:3058–3062. https://doi.org/10.1002/anie.201510849

    Article  CAS  Google Scholar 

  22. Chen L-H, Li X-Y, Rooke JC, Zhang Y-H, Yang X-Y, Tang Y, Xiao F, Su B-L (2012) Hierarchically structured zeolites: synthesis, mass transport properties and applications. J Mater Chem Dyn 22:17381–17403. https://doi.org/10.1039/c2jm31957h

    Article  CAS  Google Scholar 

  23. Dutta S, Bhaumik A, Wu KC (2014) Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 7:3445–3816. https://doi.org/10.1039/c4ee01075b

    Article  CAS  Google Scholar 

  24. Du X, He J (2011) Spherical silica micro/nanomaterials with hierarchical structures: synthesis and applications. Nanoscale 3:3984–4002. https://doi.org/10.1039/c1nr10660k

    Article  CAS  Google Scholar 

  25. Parlett CMA, Wilson K, Lee AF, Lee AF, Wilson K (2013) Hierarchical porous materials: catalytic applications. Chem Soc Rev 42:3876–3893. https://doi.org/10.1039/c2cs35378d

    Article  CAS  Google Scholar 

  26. Pan T, Wu Z, Yip ACK (2019) Advances in the green synthesis of microporous. Catalysts 9:1–18. https://doi.org/10.3390/catal9030274

    Article  CAS  Google Scholar 

  27. Mignoni ML (2012) Zeólitas obtidas com líquidos iônicos como direcionadores de estrutura: síntese e reatividade. Tese de doutorado, Universidade Federal do Rio Grande do Sul (UFRGS). http://hdl.handle.net/10183/55505. Accessed 28 Sept 2018

  28. Kumar D, Schumacher K, Du Fresne C, von Hohenesche M, Grün KK Unger (2001) MCM-41, MCM-48 and related mesoporous adsorbents: their synthesis and characterisation. Colloids Surf A Physicochem Eng Asp 187–188:109–116. https://doi.org/10.1016/S0927-7757(01)00638-0

    Article  Google Scholar 

  29. Zhou Y, Antonietti M (2004) A series of highly ordered, super-microporous, lamellar silicas prepared by nanocasting with ionic liquids. Chem Mater 16:544–550. https://doi.org/10.1021/cm034442w

    Article  CAS  Google Scholar 

  30. Ilavsky J, Jemian PR (2009) Irena: tool suite for modeling and analysis of small-angle scattering. J Appl Crystallogr 42:347–353. https://doi.org/10.1107/s0021889809002222

    Article  CAS  Google Scholar 

  31. Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900. https://doi.org/10.1107/s0021889806035059

    Article  CAS  Google Scholar 

  32. Beaucage G (2002) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728. https://doi.org/10.1107/s0021889895005292

    Article  Google Scholar 

  33. Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Crystallogr 29:134–146. https://doi.org/10.1107/S0021889895011605

    Article  CAS  Google Scholar 

  34. Treacy MM, Higgins JB (2001) Collection of simulated XRD powder patterns for zeolites, 4th edn. Elsevier, Amsterdam. https://doi.org/10.1016/s0166-9834(00)81382-2

    Book  Google Scholar 

  35. Duran A, Serna C, Fornes V, Fernandez Navarro JM (1986) Structural considerations about SiO2 glasses prepared by sol–gel. J Non Cryst Solids 82:69–77. https://doi.org/10.1016/0022-3093(86)90112-2

    Article  CAS  Google Scholar 

  36. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  37. Bernardes AA, Radtke C, Alves MDCM, Baibich IM, Lucchese M, Dos Santos JHZ (2014) Synthesis and characterization of SiO2–CrO3, SiO2–MoO3, and SiO2–WO3 mixed oxides produced using the non-hydrolytic sol-gel process. J Sol Gel Sci Technol 69:72–84. https://doi.org/10.1007/s10971-013-3188-1

    Article  CAS  Google Scholar 

  38. Corrêa GG, Morais EC, Brambilla R, Bernardes AA, Radtke C, Dezen D, Júnior AV, Fronza N, Santos JHZD (2014) Effects of the sol–gel route on the structural characteristics and antibacterial activity of silica-encapsulated gentamicin. Colloids Surf B Biointerf 116:510–517. https://doi.org/10.1016/j.colsurfb.2014.01.043

    Article  CAS  Google Scholar 

  39. Hench LL, West JK (1990) The sol–gel process. Chem Rev 90:33–72. https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  40. Pauwels B, Van Tendeloo G, Thoelen C, Van Rhijn W, Jacobs PA (2001) Structure determination of spherical MCM-41 particles. Adv Mater 13:1317–1320. https://doi.org/10.1002/1521-4095(200109)13:17%3c1317:AID-ADMA1317%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  41. Schumacher K, Grün M, Unger KK (1999) Novel synthesis of spherical MCM-48. Microporous Mesoporous Mater 27:201–206. https://doi.org/10.1016/S1387-1811(98)00254-6

    Article  CAS  Google Scholar 

  42. Schmidt R, Stöcker M, Akporiaye D, Heggelund Tørstad E, Olsen A (1995) High-resolution electron microscopy and X-ray diffraction studies of MCM-48. Microporous Mater. 5:1–7. https://doi.org/10.1016/0927-6513(95)00030-d

    Article  CAS  Google Scholar 

  43. Tao Y, Kanoh H, Kaneko K (2003) ZSM-5 monolith of uniform mesoporous channels. J Am Chem Soc 125:6044–6045. https://doi.org/10.1021/ja0299405

    Article  CAS  Google Scholar 

  44. Li X, Liu X, Liu S, Xie S, Zhu X, Chen F, Xu L (2013) Activity enhancement of ZSM-35 in dimethyl ether carbonylation reaction through alkaline modifications. RSC Adv 3:16549–16557. https://doi.org/10.1039/c3ra42197j

    Article  CAS  Google Scholar 

  45. Chen Y, Han D, Cui H, Zhang Q (2019) Synthesis of ZSM-5 via organotemplate-free and dry gel conversion method: investigating the effects of experimental parameters. Elsevier, Amsterdam. https://doi.org/10.1016/j.jssc.2019.120969

    Book  Google Scholar 

  46. Na J, Liu G, Zhou T (2013) Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization. Catal Lett 143(3):267–275. https://doi.org/10.1007/s10562-013-0963-0

    Article  CAS  Google Scholar 

  47. Li R, Chong S, Altaf N, Gao Y, Louis B, Wang Q (2019) Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds. Front Chem 7:1–10. https://doi.org/10.3389/fchem.2019.00505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo L. Mignoni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Aguiar Pedott, V., Bordin, I., dos Santos da Silva, A. et al. Hierarchical pore structure of zeolite/MCM obtained by supramolecular templating using ionic liquid (C16MI·Cl) as the structure-directing agent. J Mater Sci 55, 2343–2352 (2020). https://doi.org/10.1007/s10853-019-04117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04117-z

Navigation