Skip to main content

Advertisement

Log in

A highly accurate methodology for the prediction and correlation of mechanical properties based on the slimness ratio of additively manufactured tensile test specimens

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Additive manufacturing has been established as a process to produce structural and load-bearing parts, and this process has become attractive to many industries such as medical, aerospace, automotive, and oil and gas. These industrial applications are commonly characterized by high and stringent regulatory requirements. Due to the disparity and lack of consensus in mechanical properties reported in the literature, and the need to test and validate the components manufactured by the additive manufacturing process, this work aimed at performing an experimental simulation study of the effects of the slimness ratio on the mechanical properties of as-built Ti–6Al–4V electron beam additively manufactured parts subjected to tensile tests. From the obtained results, we propose an accurate method for the prediction and correlation of mechanical properties of specimens with different geometries. The main conclusion from this study is that elongation at fracture and tensile toughness follow a logarithmic equation and that symmetric cross-section specimens show superior mechanical strength with similar mechanical behavior to high-stress-triaxiality parts subjected to tensile tests. The fracture mode and associated micromechanisms are strongly influenced by the specimen’s width/thickness ratio, and the use of the Bertella–Oliver equation coupled with finite element method (analysis) tools was effective toward understanding the mechanical behavior of specimens subjected to tensile tests. In summary, the method presented here may be useful for predicting and comparing the data of specimens that do not comply with normative values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bhargav A, Sanjairaj V, Rosa V et al (2018) Applications of additive manufacturing in dentistry: a review. J Biomed Mater Res Part B Appl Biomater 106:2058–2064. https://doi.org/10.1002/jbm.b.33961

    Article  CAS  Google Scholar 

  2. Javaid M, Haleem A (2018) Additive manufacturing applications in orthopaedics: A review. J Clin Orthop Trauma 9:202–206. https://doi.org/10.1016/j.jcot.2018.04.008

    Article  Google Scholar 

  3. Chen L, He Y, Yang Y et al (2017) The research status and development trend of additive manufacturing technology. Int J Adv Manuf Technol 89:3651–3660. https://doi.org/10.1007/s00170-016-9335-4

    Article  Google Scholar 

  4. Uriondo A, Esperon-Miguez M, Perinpanayagam S (2015) The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc Inst Mech Eng Part G J Aerosp Eng 229:2132–2147. https://doi.org/10.1177/0954410014568797

    Article  CAS  Google Scholar 

  5. Leal R, Barreiros FM, Alves L et al (2017) Additive manufacturing tooling for the automotive industry. Int J Adv Manuf Technol 92:1671–1676. https://doi.org/10.1007/s00170-017-0239-8

    Article  Google Scholar 

  6. Sireesha M, Lee J, Kranthi Kiran AS et al (2018) A review on additive manufacturing and its way into the oil and gas industry. RSC Adv 8:22460–22468. https://doi.org/10.1039/C8RA03194K

    Article  CAS  Google Scholar 

  7. Seifi M, Gorelik M, Waller J et al (2017) Progress towards metal additive manufacturing standardization to support qualification and certification. Jom 69:439–455. https://doi.org/10.1007/s11837-017-2265-2

    Article  Google Scholar 

  8. Zhang L-C, Liu Y, Li S, Hao Y (2018) Additive manufacturing of titanium alloys by electron beam melting: a review. Adv Eng Mater 20:1700842. https://doi.org/10.1002/adem.201700842

    Article  CAS  Google Scholar 

  9. Carroll BE, Palmer TA, Beese AM (2015) Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320. https://doi.org/10.1016/j.actamat.2014.12.054

    Article  CAS  Google Scholar 

  10. Dutta B, (Sam) Froes FH (2015) The additive manufacturing (AM) of titanium alloys. In: Titanium powder metallurgy. Elsevier, pp 447–468 https://doi.org/10.1016/B978-0-12-800054-0.00024-1

  11. Wang F, Williams S, Colegrove P, Antonysamy AA (2013) Microstructure and mechanical properties of wire and arc additive manufactured Ti–6Al–4V. Metall Mater Trans A 44:968–977. https://doi.org/10.1007/s11661-012-1444-6

    Article  CAS  Google Scholar 

  12. Shi X, Ma S, Liu C et al (2017) Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti–6Al–4V alloy: microstructure and mechanical properties. Mater Sci Eng A 684:196–204. https://doi.org/10.1016/j.msea.2016.12.065

    Article  CAS  Google Scholar 

  13. ISO/ASTM 52904:2019 Additive manufacturing—process characteristics and performance—process to meet critical applications

  14. ISO 17296–3 (2014) Additive manufacturing—general principles–Part 3: main characteristics and corresponding test methods

  15. ASTM F3303 (2018) Standard for additive manufacturing—process characteristics and performance: practice for metal powder bed fusion process to meet critical applications. https://doi.org/10.1520/F3303-18.2

  16. ASTM F3122-14 Standard guide for evaluating mechanical properties of metal materials made via additive manufacturing processes. https://doi.org/10.1520/F3122-14.2

  17. ASTM F2924-14 Standard specification for additive manufacturing Titanium–6 Aluminum–4 Vanadium with powder bed fusion. https://doi.org/10.1520/F2924-14.2

  18. ASTM E8/E8M-16 Standard test methods for tension testing of metallic materials. https://doi.org/10.1520/E0008

  19. ISO 6892–1 (2019) Metallic materials–tensile testing–Part 1: method of test at room temperature

  20. Dzugan J, Seifi M, Prochazka R et al (2018) Effects of thickness and orientation on the small scale fracture behaviour of additively manufactured Ti-6Al-4V. Mater Charact 143:94–109. https://doi.org/10.1016/j.matchar.2018.04.003

    Article  CAS  Google Scholar 

  21. Agius D, Kourousis KI, Wallbrink C, Song T (2017) Cyclic plasticity and microstructure of as-built SLM Ti–6Al–4V: the effect of build orientation. Mater Sci Eng A 701:85–100. https://doi.org/10.1016/j.msea.2017.06.069

    Article  CAS  Google Scholar 

  22. Voisin T, Calta NP, Khairallah SA et al (2018) Defects-dictated tensile properties of selective laser melted Ti–6Al–4V. Mater Des 158:113–126. https://doi.org/10.1016/j.matdes.2018.08.004

    Article  CAS  Google Scholar 

  23. Xu W, Brandt M, Sun S et al (2015) Additive manufacturing of strong and ductile Ti–6Al–4V by selective laser melting via in situ martensite decomposition. Acta Mater 85:74–84. https://doi.org/10.1016/j.actamat.2014.11.028

    Article  CAS  Google Scholar 

  24. Dinda GP, Song L, Mazumder J (2008) Fabrication of Ti–6Al–4V scaffolds by direct metal deposition. Metall Mater Trans A 39:2914–2922. https://doi.org/10.1007/s11661-008-9634-y

    Article  CAS  Google Scholar 

  25. Alcisto J, Enriquez A, Garcia H et al (2011) Tensile properties and microstructures of laser-formed Ti–6Al–4V. J Mater Eng Perform 20:203–212. https://doi.org/10.1007/s11665-010-9670-9

    Article  CAS  Google Scholar 

  26. Wu B, Pan Z, Ding D et al (2018) Effects of heat accumulation on microstructure and mechanical properties of Ti6Al4V alloy deposited by wire arc additive manufacturing. Addit Manuf 23:151–160. https://doi.org/10.1016/j.addma.2018.08.004

    Article  CAS  Google Scholar 

  27. Murr LE, Quinones SA, Gaytan SM et al (2009) Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater 2:20–32. https://doi.org/10.1016/j.jmbbm.2008.05.004

    Article  CAS  Google Scholar 

  28. de Formanoir C, Michotte S, Rigo O et al (2016) Electron beam melted Ti-6Al-4V: microstructure, texture and mechanical behavior of the as-built and heat-treated material. Mater Sci Eng A 652:105–119. https://doi.org/10.1016/j.msea.2015.11.052

    Article  CAS  Google Scholar 

  29. Greitemeier D, Dalle Donne C, Schoberth A et al (2015) Uncertainty of additive manufactured Ti–6Al–4V: chemistry, microstructure and mechanical properties. Appl Mech Mater 807:169–180. https://doi.org/10.4028/www.scientific.net/amm.807.169

    Article  Google Scholar 

  30. Rodriguez OL, Allison PG, Whittington WR et al (2015) Dynamic tensile behavior of electron beam additive manufactured Ti6Al4V. Mater Sci Eng A 641:323–327. https://doi.org/10.1016/j.msea.2015.06.069

    Article  CAS  Google Scholar 

  31. Hrabe N, Quinn T (2013) Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti–6Al–4V) fabricated using electron beam melting (EBM), Part 2: energy input, orientation, and location. Mater Sci Eng A 573:271–277. https://doi.org/10.1016/j.msea.2013.02.065

    Article  CAS  Google Scholar 

  32. Al-Bermani SS, Blackmore ML, Zhang W, Todd I (2010) The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metall Mater Trans A Phys Metall Mater Sci 41:3422–3434. https://doi.org/10.1007/s11661-010-0397-x

    Article  CAS  Google Scholar 

  33. Murr LE, Esquivel EV, Quinones SA et al (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater Charact 60:96–105. https://doi.org/10.1016/j.matchar.2008.07.006

    Article  CAS  Google Scholar 

  34. Galarraga H, Lados DA, Dehoff RR et al (2016) Effects of the microstructure and porosity on properties of Ti–6Al–4V ELI alloy fabricated by electron beam melting (EBM). Addit Manuf 10:47–57. https://doi.org/10.1016/j.addma.2016.02.003

    Article  CAS  Google Scholar 

  35. Bordin A, Bruschi S, Ghiotti A et al (2014) Comparison between wrought and EBM Ti6Al4V machinability characteristics. Key Eng Mater 611–612:1186–1193. https://doi.org/10.4028/www.scientific.net/KEM.611-612.1186

    Article  CAS  Google Scholar 

  36. Kahlin M, Ansell H, Moverare JJ (2017) Fatigue behaviour of additive manufactured Ti6Al4V, with as-built surfaces, exposed to variable amplitude loading. Int J Fatigue 103:353–362. https://doi.org/10.1016/j.ijfatigue.2017.06.023

    Article  CAS  Google Scholar 

  37. Edwards P, O’Conner A, Ramulu M (2013) Electron beam additive manufacturing of titanium components: properties and performance. J Manuf Sci Eng 135:1–8. https://doi.org/10.1115/1.4025773

    Article  Google Scholar 

  38. Ladani L, Razmi J, Choudhury SF (2014) Mechanical anisotropy and strain rate dependency behavior of Ti6Al4V produced using E-beam additive fabrication. J Eng Mater Technol Trans ASME 136:1–8. https://doi.org/10.1115/1.4027729

    Article  CAS  Google Scholar 

  39. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  CAS  Google Scholar 

  40. Everton SK, Hirsch M, Stavroulakis PI et al (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445. https://doi.org/10.1016/j.matdes.2016.01.099

    Article  CAS  Google Scholar 

  41. Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46:151–186. https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  CAS  Google Scholar 

  42. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  CAS  Google Scholar 

  43. Zhao YH, Guo YZ, Wei Q et al (2008) Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr Mater. https://doi.org/10.1016/j.scriptamat.2008.05.031

    Article  Google Scholar 

  44. Yang L, Lu L (2013) The influence of sample thickness on the tensile properties of pure Cu with different grain sizes. Scr Mater 69:242–245. https://doi.org/10.1016/j.scriptamat.2013.04.009

    Article  CAS  Google Scholar 

  45. Yuan WJ, Zhang ZL, Su YJ et al (2012) Influence of specimen thickness with rectangular cross-section on the tensile properties of structural steels. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2011.11.021

    Article  Google Scholar 

  46. Kumar K, Pooleery A, Madhusoodanan K, et al (2014) Use of miniature tensile specimen for measurement of mechanical properties. In: Procedia engineering

  47. Chen X, Li Y, Han X, Zhang J (2018) Size effect studies on tensile tests for hot stamping steel. J Mater Eng Perform 27:640–647. https://doi.org/10.1007/s11665-018-3135-y

    Article  CAS  Google Scholar 

  48. Hwang J-K (2019) Effects of diameter and preparation of round shaped tensile specimen on mechanical properties. Mater Sci Eng A 763:138119. https://doi.org/10.1016/j.msea.2019.138119

    Article  CAS  Google Scholar 

  49. Sergueeva AV, Zhou J, Meacham BE, Branagan DJ (2009) Gage length and sample size effect on measured properties during tensile testing. Mater Sci Eng A. https://doi.org/10.1016/j.msea.2009.07.046

    Article  Google Scholar 

  50. Algardh JK, Horn T, West H et al (2016) Thickness dependency of mechanical properties for thin-walled titanium parts manufactured by Electron Beam Melting (EBM) ®. Addit Manuf. https://doi.org/10.1016/j.addma.2016.06.009

    Article  Google Scholar 

  51. Masete MS, Muchavi NS, Chikosha S (2018) The effect of specimen geometry on tensile properties of titanium alloy metal sheet. IOP Conf Ser Mater Sci Eng 430:012015. https://doi.org/10.1088/1757-899X/430/1/012015

    Article  Google Scholar 

  52. Fotovvati B, Etesami SA, Asadi E (2019) Process-property-geometry correlations for additively-manufactured Ti–6Al–4V sheets. Mater Sci Eng A 760:431–447. https://doi.org/10.1016/j.msea.2019.06.020

    Article  CAS  Google Scholar 

  53. Oliver DA (1928) Proposed new criteria of ductility from a new law connecting the percentage elongation with size of test-piece. Proc Inst Mech Eng 115:827–864. https://doi.org/10.1243/PIME_PROC_1928_115_019_02

    Article  Google Scholar 

  54. ASTM B214 − 16 Standard Test Method for Sieve Analysis of Metal Powders. https://doi.org/10.1520/B0214-16.2

  55. ASTM F3001 − 14 standard specification for additive manufacturing Titanium-6 Aluminum-4 Vanadium ELI (extra-low interstitial ) with powder bed fusion. https://doi.org/10.1520/F3001-14

  56. ASTM E1941 − 10 standard test method for determination of carbon in refractory and reactive metals and their alloys by combustion analysis. https://doi.org/10.1520/E1941-10R16.2

  57. ASTM E1409 − 13 test method for determination of oxygen and nitrogen in titanium and titanium alloys by inert gas fusion. https://doi.org/10.1520/E1409-13.2

  58. ASTM E1447 − 09 standard test method for determination of hydrogen in titanium and titanium alloys by inert gas fusion thermal conductivity/infrared detection. https://doi.org/10.1520/E1447-09R16.2

  59. ASTM E2371 − 13 standard test method for analysis of titanium and titanium alloys by direct current plasma and inductively coupled plasma atomic emission spectrometry (performance-based test methodology). https://doi.org/10.1520/E2371-13.2

  60. ISO/ASTM 52921 Standard Terminology for Additive Manufacturing - Coordinate Systems and Test Methodologies

  61. Hooputra H, Gese H, Dell H, Werner H (2004) A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int J Crashworthiness 9:449–463. https://doi.org/10.1533/ijcr.2004.0289

    Article  Google Scholar 

  62. Huang J, Guo Y, Qin D et al (2018) Influence of stress triaxiality on the failure behavior of Ti-6Al-4V alloy under a broad range of strain rates. Theor Appl Fract Mech 97:48–61. https://doi.org/10.1016/j.tafmec.2018.07.008

    Article  CAS  Google Scholar 

  63. Boyer R, Collings EW (1994) Materials properties handbook: titanium alloys. ASM International, Cleveland

    Google Scholar 

  64. Ahmed T, Rack HJ (1998) Phase transformations during cooling in α+β titanium alloys. Mater Sci Eng A 243:206–211. https://doi.org/10.1016/S0921-5093(97)00802-2

    Article  Google Scholar 

  65. Tan X, Kok Y, Toh WQ et al (2016) Revealing martensitic transformation and α/β interface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V. Sci Rep 6:1–10. https://doi.org/10.1038/srep26039

    Article  CAS  Google Scholar 

  66. Tan X, Kok Y, Tan YJ et al (2015) Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting. Acta Mater 97:1–16. https://doi.org/10.1016/j.actamat.2015.06.036

    Article  CAS  Google Scholar 

  67. Mikkelsen LP (1999) Necking in rectangular tensile bars approximated by a 2-D gradient dependent plasticity model. Eur J Mech A/Solids 18:805–818. https://doi.org/10.1016/S0997-7538(99)00113-8

    Article  Google Scholar 

  68. Tvergaard V (1993) Necking in tensile bars with rectangular cross-section. Comput Methods Appl Mech Eng 103:273–290. https://doi.org/10.1016/0045-7825(93)90049-4

    Article  Google Scholar 

  69. Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6:236–249. https://doi.org/10.1016/0022-5096(58)90029-2

    Article  Google Scholar 

  70. Moore P, Booth G (2015) Failure modes and analysis in metals. In: The welding engineer's guide to fracture and fatigue. Elsevier, pp 95–110 https://doi.org/10.1533/9781782423911.1.95

  71. Takeda Y, Kiattisaksri C, Aramaki M et al (2017) Effects of specimen thickness in tensile tests on elongation and deformation energy for industrially pure iron. ISIJ Int 57:1129–1137. https://doi.org/10.2355/isijinternational.ISIJINT-2016-555

    Article  CAS  Google Scholar 

  72. Bird JE, Pollock T, Srivastava SK (1986) Flow localization during plane strain punch stretching of a ferrite-austenite steel. Metall Trans A 17:1537–1546. https://doi.org/10.1007/BF02650090

    Article  Google Scholar 

  73. Maaß R, Derlet PM (2018) Micro-plasticity and recent insights from intermittent and small-scale plasticity. Acta Mater 143:338–363. https://doi.org/10.1016/j.actamat.2017.06.023

    Article  CAS  Google Scholar 

  74. Minor AM, Syed Asif SA, Shan Z et al (2006) A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5:697–702. https://doi.org/10.1038/nmat1714

    Article  CAS  Google Scholar 

  75. Moretti P, Cerruti B, Miguel MC (2011) Yielding and irreversible deformation below the microscale: Surface effects and non-mean-field plastic avalanches. PLoS ONE 6:1–7. https://doi.org/10.1371/journal.pone.0020418

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank LNNano/CNPEM for providing access to the SEM and Prof. Waldek Wladimir Bose Filho (EESC/USP) and Douglas Bon for providing access to the mechanical testing facilities. This work was supported by the National Council for Scientific and Technological Development (CNPq), São Paulo Research Foundation (FAPESP), and the Coordination of Superior Level Staff Improvement – Brasil (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éder S. N. Lopes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moura, L.S., Vittoria, G.D., Gabriel, A.H.G. et al. A highly accurate methodology for the prediction and correlation of mechanical properties based on the slimness ratio of additively manufactured tensile test specimens. J Mater Sci 55, 9578–9596 (2020). https://doi.org/10.1007/s10853-020-04654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04654-y

Navigation