Skip to main content

Advertisement

Log in

Magnetic and high-dielectric-constant nanoparticle polymer tri-composites for sensor applications

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multifunctional composites can be achieved by adding two different fillers with complementary properties to a polymer matrix. In this work, novel tri-composite multifunctional materials based on the incorporation of dielectric BaTiO3 (BT) and magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride) (PVDF) have been developed with enhanced dielectric and magnetic responses for applications in areas such as energy harvesting, sensors and actuators. The microstructure, polymer phases as well as the thermal stability of the samples were investigated, showing the independence of the polymer crystallization phases, degree of crystallinity and melting temperature on filler type and contents. Further, independent of the type of the filler, its content improves the degradation temperature of the tri-composites. The magnetic properties and electrical conductivity of the tri-composites are correlated with the increase in the content of the CFO filler, while the dielectric response is mainly determined by the interfacial polarization. A high dielectric constant of 26 at 1 kHz and a magnetization of 5.7 emu * g−1 are obtained for a sample of 10 wt% CFO–10 wt% BT/PVDF, which was used for the demonstration of the suitability of the materials for magnetic deformation sensing. This work provides pathways for the development of tri-composites based on PVDF with high dielectric constant and magnetic properties for application in areas such as sensors and actuators.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Chapter 1 Nanotechnology and nanomaterials (2006). In: Capek I (ed) Studies in Interface Science Elsevier pp 1–69

  2. Paul DR, Robeson LM (2008) Polymer 49:3187. https://doi.org/10.1016/j.polymer.2008.04.017

    Article  CAS  Google Scholar 

  3. Mendes-Felipe C, Oliveira J, Etxebarria I, Vilas-Vilela JL, Lanceros-Mendez S (2019) Adv Mater Technol 4:1800618. https://doi.org/10.1002/admt.201800618

    Article  CAS  Google Scholar 

  4. Oliveira J, Correia V, Castro H, Martins P, Lanceros-Mendez S (2018) Addit Manuf 21:269. https://doi.org/10.1016/j.addma.2018.03.012

    Article  CAS  Google Scholar 

  5. Kamila S (2013) Am J Appl Sci 10:876

    Article  Google Scholar 

  6. Bogue R (2014) Assembly Autom 34:16. https://doi.org/10.1108/AA-10-2013-094

    Article  Google Scholar 

  7. Ajayan PM, Schadler LS, Braun VP (2003) Nanocompos Sci Technol. FRG, Weinheim

    Book  Google Scholar 

  8. Koo J (2006) Polymer nanocomposites: processing, characterization, and applications

  9. Mamada S, Yaguchi N, Hansaka M, Yamato M, Yoshida H (2015) J Appl Polym Sci. https://doi.org/10.1002/app.41817

    Article  Google Scholar 

  10. Costa P, Nunes-Pereira J, Oliveira J et al (2017) Compos Sci Technol 153:241. https://doi.org/10.1016/j.compscitech.2017.11.001

    Article  CAS  Google Scholar 

  11. Fernandes LC, Correia DM, García-Astrain C et al (2019) ACS Appl Mater Interfaces 11:20316. https://doi.org/10.1021/acsami.9b00645

    Article  CAS  Google Scholar 

  12. Martins P, Kolen’ko YV, Rivas J, Lanceros-Mendez S (2015) ACS Appl Mater Interfaces 7:15017. https://doi.org/10.1021/acsami.5b04102

    Article  CAS  Google Scholar 

  13. Ciprari D, Jacob K, Tannenbaum R (2006) Macromolecules 39:6565. https://doi.org/10.1021/ma0602270

    Article  CAS  Google Scholar 

  14. Netravali AN, Mittal KL (2016) Interface/interphase in polymer nanocomposites. Wiley, Hoboken

    Book  Google Scholar 

  15. Martins P, Costa CM, Benelmekki M et al (2012) CrystEngComm 14:2807. https://doi.org/10.1039/c2ce06654h

    Article  CAS  Google Scholar 

  16. Martins P, Costa CM, Lanceros-Mendez S (2011) Appl Phys A 103:233. https://doi.org/10.1007/s00339-010-6003-7

    Article  CAS  Google Scholar 

  17. Lopes AC, Costa CM, Serra RS, Neves IC, Ribelles JLG, Lanceros-Méndez S (2013) Solid State Ion 235:42. https://doi.org/10.1016/j.ssi.2013.01.013

    Article  CAS  Google Scholar 

  18. Costa P, Nunes-Pereira J, Pereira N, Castro N, Gonçalves S, Lanceros-Mendez S (2019) Energy Technol 7:1800852. https://doi.org/10.1002/ente.201800852

    Article  CAS  Google Scholar 

  19. Ribeiro C, Sencadas V, Correia DM, Lanceros-Méndez S (2015) Colloids Surf B 136:46. https://doi.org/10.1016/j.colsurfb.2015.08.043

    Article  CAS  Google Scholar 

  20. Ribeiro C, Costa CM, Correia DM et al (2018) Nat Prot 13:681. https://doi.org/10.1038/nprot.2017.157

    Article  CAS  Google Scholar 

  21. Martins P, Lopes AC, Lanceros-Mendez S (2014) Prog Polym Sci 39:683. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  22. Cai X, Lei T, Sun D et al (2017) RSC Adv 7:15382. https://doi.org/10.1039/C7RA01267E

    Article  CAS  Google Scholar 

  23. Ribeiro C, Costa CM, Martins P, Correia V, Lanceros-Mendez S (2018) Reference module in materials science and materials engineering. Elsevier, Amsterdam

    Google Scholar 

  24. Xue Q, Guo Q, Tao B, Han Z, Zhang J, Pan X (2017) Compos A Appl Sci Manuf 100:324. https://doi.org/10.1016/j.compositesa.2017.05.027

    Article  CAS  Google Scholar 

  25. Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Méndez S (2012) J Mater Sci 47:1378. https://doi.org/10.1007/s10853-011-5916-7

    Article  CAS  Google Scholar 

  26. Correia DM, Fernandes LC, Martins PM et al (2020) Adv Func Mater 30:1909736. https://doi.org/10.1002/adfm.201909736

    Article  CAS  Google Scholar 

  27. Gonçalves R, Martins P, Correia DM et al (2015) RSC Adv 5:35852. https://doi.org/10.1039/C5RA04409J

    Article  CAS  Google Scholar 

  28. Lopes AC, Costa CM, Tavares CJ, Neves IC, Lanceros-Mendez S (2011) J Phys Chem C 115:18076. https://doi.org/10.1021/jp204513w

    Article  CAS  Google Scholar 

  29. Lopes AC, Silva MP, Gonçalves R et al (2010) J Phys Chem C 114:14446. https://doi.org/10.1021/jp1052997

    Article  CAS  Google Scholar 

  30. Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) J Mater Chem 21:3751. https://doi.org/10.1039/C0JM02408B

    Article  CAS  Google Scholar 

  31. Thakur VK, Tan EJ, Lin M-F, Lee PS (2011) Polym Chem 2:2000. https://doi.org/10.1039/C1PY00225B

    Article  CAS  Google Scholar 

  32. Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) J Mater Chem 22:5951. https://doi.org/10.1039/C2JM15665B

    Article  CAS  Google Scholar 

  33. Wang H, Fu Q, Luo J, Zhao D, Luo L, Li W (2017) Appl Phys Lett 110:242902. https://doi.org/10.1063/1.4986443

    Article  CAS  Google Scholar 

  34. Chen T, Liu B (2017) Mater Lett 209:163. https://doi.org/10.1016/j.matlet.2017.07.088

    Article  CAS  Google Scholar 

  35. He D, Wang Y, Chen X, Deng Y (2017) Compos A Appl Sci Manuf 93:137. https://doi.org/10.1016/j.compositesa.2016.11.025

    Article  CAS  Google Scholar 

  36. Adhlakha N, Yadav KL, Truccato M et al (2017) Eur Polym J 91:100. https://doi.org/10.1016/J.EURPOLYMJ.2017.03.026

    Article  CAS  Google Scholar 

  37. Wan Y-J, Zhu P-L, Yu S-H et al (2017) Compos Sci Technol 141:48. https://doi.org/10.1016/j.compscitech.2017.01.010

    Article  CAS  Google Scholar 

  38. Ghosh B, Calderón RMT, Espinoza-González R, Hevia SA (2017) Mater Chem Phys 196:302. https://doi.org/10.1016/j.matchemphys.2017.05.009

    Article  CAS  Google Scholar 

  39. Wang Z, Wang T, Fang M, Wang C, Xiao Y, Pu Y (2017) Compos Sci Technol 146:139. https://doi.org/10.1016/j.compscitech.2017.04.023

    Article  CAS  Google Scholar 

  40. Sahoo R, Mishra S, Unnikrishnan L et al (2020) Mater Sci Semicond Process 117:105173. https://doi.org/10.1016/j.mssp.2020.105173

    Article  CAS  Google Scholar 

  41. Mayeen A, Kala MS, Sunija S et al (2020) J Alloy Compd 837:155492. https://doi.org/10.1016/j.jallcom.2020.155492

    Article  CAS  Google Scholar 

  42. Ahsani M, Hazrati H, Javadi M, Ulbricht M, Yegani R (2020) Sep Purif Technol 249:116938. https://doi.org/10.1016/j.seppur.2020.116938

    Article  CAS  Google Scholar 

  43. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) J Mater Chem 21:16500. https://doi.org/10.1039/C1JM12429C

    Article  CAS  Google Scholar 

  44. Ferreira JCC, Monteiro TS, Lopes AC et al (2015) J Non-Cryst Solids 412:16. https://doi.org/10.1016/j.jnoncrysol.2015.01.003

    Article  CAS  Google Scholar 

  45. Wu Y, Hsu SL, Honeker C, Bravet DJ, Williams DS (2012) J Phys Chem B 116:7379. https://doi.org/10.1021/jp3043494

    Article  CAS  Google Scholar 

  46. Haponska M, Trojanowska A, Nogalska A, Jastrzab R, Gumi T, Tylkowski B (2017) Polymers 9:718

    Article  Google Scholar 

  47. Chiu F-C (2017) Polym Test 62:115. https://doi.org/10.1016/J.POLYMERTESTING.2017.06.018

    Article  CAS  Google Scholar 

  48. Martins P, Costa CM, Benelmekki M, Botelho G, Lanceros-Méndez S (2013) J Mater Sci 48:2681. https://doi.org/10.1007/s10853-012-7063-1

    Article  CAS  Google Scholar 

  49. Botelho G, Lanceros-Mendez S, Gonçalves AM, Sencadas V, Rocha JG (2008) J Non-Cryst Solids 354:72. https://doi.org/10.1016/j.jnoncrysol.2007.07.012

    Article  CAS  Google Scholar 

  50. Thomas E, Parvathy C, Balachandran N, Bhuvaneswari S, Vijayalakshmi KP, George BK (2017) Polymer 115:70. https://doi.org/10.1016/j.polymer.2017.03.026

    Article  CAS  Google Scholar 

  51. Zhu Z, Wang L, Xu Y, Li Q, Jiang J, Wang X (2017) J Colloid Interface Sci 504:429. https://doi.org/10.1016/J.JCIS.2017.05.068

    Article  CAS  Google Scholar 

  52. Jahan N, Mighri F, Rodrigue D, Ajji A (2017) J Appl Polym Sci. https://doi.org/10.1002/app.44940

    Article  Google Scholar 

  53. Dias JC, Correia DM, Costa CM et al (2019) Electrochim Acta 296:598. https://doi.org/10.1016/j.electacta.2018.11.049

    Article  CAS  Google Scholar 

  54. Bhame SD, Joy PA (2006) J Appl Phys 100:113911. https://doi.org/10.1063/1.2401648

    Article  CAS  Google Scholar 

  55. Maaz K, Mumtaz A, Hasanain SK, Ceylan A (2007) J Magn Magn Mater 308:289. https://doi.org/10.1016/j.jmmm.2006.06.003

    Article  CAS  Google Scholar 

  56. Ortiz-Quiñonez J-L, Pal U, Villanueva MS (2018) ACS Omega 3:14986. https://doi.org/10.1021/acsomega.8b02229

    Article  CAS  Google Scholar 

  57. Ren L, Zha J-W, Li RKY, Shi C-Y, Dang Z-M (2017) Compos Commun 4:24. https://doi.org/10.1016/j.coco.2017.03.004

    Article  Google Scholar 

  58. Martins P, Costa CM, Botelho G, Lanceros-Mendez S, Barandiaran JM, Gutierrez J (2012) Mater Chem Phys 131:698. https://doi.org/10.1016/j.matchemphys.2011.10.037

    Article  CAS  Google Scholar 

  59. Reddy NV, Kumar CR, Rao VVRN (1993) Polym Int 32:381. https://doi.org/10.1002/pi.4990320408

    Article  CAS  Google Scholar 

  60. Xia X, Zhong Z, Weng GJ (2017) Mech Mater 109:42. https://doi.org/10.1016/j.mechmat.2017.03.014

    Article  Google Scholar 

  61. Lu H, Liu L, Lin J et al (2017) J Appl Polym Sci 134:45362. https://doi.org/10.1002/app.45362

    Article  CAS  Google Scholar 

  62. Deshmukh K, Ahamed MB, Sadasivuni KK et al (2017) J Polym Res. https://doi.org/10.1007/s10965-017-1189-4

    Article  Google Scholar 

  63. Dyre JC (1988) J Appl Phys 64:2456

    Article  Google Scholar 

  64. Jonscher AK (1977) Nature 267:673. https://doi.org/10.1038/267673a0

    Article  CAS  Google Scholar 

  65. Zhou W, Wang Z, Dong L, Sui X, Chen Q (2015) Compos A Appl Sci Manuf 79:183. https://doi.org/10.1016/j.compositesa.2015.09.004

    Article  CAS  Google Scholar 

  66. Aslam A, Islam MU, Ali I, Awan MS, Irfan M, Iftikhar A (2014) Ceram Int 40:155. https://doi.org/10.1016/j.ceramint.2013.05.116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the FCT (Fundação para a Ciência e Tecnologia) for financial support under the framework of Strategic Funding Grants UID/FIS/04650/2019, UID/EEA/04436/2019 and UID/QUI/0686/2016; also, to the project PTDC/BTM-MAT/28237/2017; PTDC/EMD–EMD/28159/2017; and PTDC/FIS-MAC/28157/2017 funded by national funds through FCT and by the ERDF through the COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI). The authors also thank the FCT for financial support under Grants SFRH/BD/131729/2017 (N.P.) and SFRH/BPD/112547/2015 (C.M.C.). The authors thank funding by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/https://doi.org/10.13039/501100011033 and from the Basque Government under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Costa.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 6378 kb)

Supplementary material 2 (DOCX 328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mooti, A., Costa, C.M., Maceiras, A. et al. Magnetic and high-dielectric-constant nanoparticle polymer tri-composites for sensor applications. J Mater Sci 55, 16234–16246 (2020). https://doi.org/10.1007/s10853-020-05165-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05165-6

Navigation