Skip to main content

Advertisement

Log in

Microwave rapid synthesis of nickel cobalt sulfides/CNTs composites as superior cycling ability electrode materials for supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nickel cobalt sulfides (NCS) have been regarded as potential candidate electrode materials for high-performance supercapacitors owing to the attractive theoretical capacitance. However, traditional synthesis (i.e., hydrothermal) of NCS is both time-consuming and energy demanding, which restricts NCS large-scale practical applications. Herein, a green and effective microwave liquid synthesis followed by a simple post-annealing process was employed to anchor NCS nanoparticles on multiwall carbon nanotubes (CNTs) forming NCS/CNTs-H composites. The NCS/CNTs-H composites hold significantly enhanced electrochemical performance is due to the combination of high redox activity of NCS anchored on superior conductivity of CNTs, which can serve as an effective carrier for NCS and decrease the aggregation of NCS nanoparticles. The optimized NCS/CNTs-H composites display high capacitance of 1261 F g−1 (175 mA h g−1) at 1 A g−1, with a remarkable rate capability, i.e., 84.4% retention from 1 to 50 A g−1. Besides, the assembled hybrid supercapacitor of NCS/CNTs-H//AC could deliver a high energy density (58.4 Wh kg−1 at the power density of 400 W kg−1) and remarkable long-term cycling stability (85.4% capacitance retention after 50 000 charge/discharge cycles). Such impressive electrochemical results indicate NCS/CNTs-H composites could be promising electrode materials for practical supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang H, Tran D, Qian J, Ding F, Losic D (2019) MoS2/graphene composites as promising materials for energy storage and conversion applications. Adv Mater Interfaces 6:1900915

    CAS  Google Scholar 

  2. Afif A, Rahman SMH, Azad AT, Zaini J, Islan MA, Azad AK (2019) Advanced materials and technologies for hybrid supercapacitors for energy storage–a review. J Energy Storage 25:100852

    Google Scholar 

  3. Yun S, Zhang Y, Xu Q, Liu J, Qin Y (2019) Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 60:600–619

    CAS  Google Scholar 

  4. Ning N, Li F, Zhou Y, Miao YE, Wei C, Liu T (2017) Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors. Chem Eng J 328:599–608

    CAS  Google Scholar 

  5. Liu Y, Li Z, Yao L, Chen L, Zhang P, Deng L (2019) Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chem Eng J 366:550–559

    CAS  Google Scholar 

  6. Liu P, Yan J, Guang Z, Huang Y, Li X, Huang W (2019) Recent advancements of polyaniline-based nanocomposites for supercapacitors. J Power Sources 424:108–130

    CAS  Google Scholar 

  7. Chen T, Wei S, Wang Z (2019) NiCo2S4-based composite materials for supercapacitors. ChemPlusChem 84:1–15

    Google Scholar 

  8. Zhang Y, Ma M, Yang J, Sun C, Su H, Huang W, Dong X (2014) Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale 6:9824–9830

    CAS  Google Scholar 

  9. Chen D, Jiang K, Huang T, Shen G (2019) Recent advances in fiber supercapacitors: materials, device configurations, and applications. Adv Mater 32:1901806

    Google Scholar 

  10. Zhai T, Wan LM, Sun S, Chen Q, Sun J, Xia QY, Xia H (2017) Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudo capacitors. Adv Mater 29:1604167

    Google Scholar 

  11. Xia C, Li P, Gandi AN, Schwingenschlögl U, Alshareef HN (2015) Is NiCo2S4 really a semiconductor? Chem Mater 27:6482–6485

    CAS  Google Scholar 

  12. Li B, Tian Z, Li H, Yang Z, Wang Y, Wang X (2019) Self-supporting graphene aerogel electrode intensified by NiCo2S4 nanoparticles for asymmetric supercapacitor. Electrochim Acta 314:32–39

    CAS  Google Scholar 

  13. Wei C, Zhan N, Tao J, Pang S, Zhang L, Cheng C, Zhang D (2018) Synthesis of hierarchically porous NiCo2S4 core-shell hollow spheres via self-template route for high performance supercapacitors. Appl Surf Sci 453:288–296

    CAS  Google Scholar 

  14. Huang W, Zhang A, Liang H, Liu R, Cai J, Cui L, Liu J (2019) Novel fabrication of hollow and spinous NiCo2S4 nanotubes templated by natural silk for all-solid-state asymmetric supercapacitors. J Colloid Interface Sci 549:140–149

    CAS  Google Scholar 

  15. Xu J, Shang S, Jiang S (2019) NiCo2S4 nanosheets and polypyrrole anchored porous micro-3D suede villus for flexible and waterproof energy storage. Electrochim Acta 321:134650

    CAS  Google Scholar 

  16. Zheng Y, Xu J, Yang X, Zhang Y, Shang Y, Hu X (2018) Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core-shell heterostructure material for high-performance asymmetric supercapacitor. Chem Eng J 333:111–121

    CAS  Google Scholar 

  17. Pu J, Cui F, Chu S, Wang T, Sheng E, Wang Z (2013) Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustain Chem Eng 2:809–815

    Google Scholar 

  18. Wen Y, Peng S, Wang Z, Hao J, Qin T, Lu S, Zhang J, He D, Fan X, Cao G (2017) Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. J Mater Chem A 5:7144–7152

    CAS  Google Scholar 

  19. Sahoo S, Naik KK, Late DJ, Rout CS (2017) Electrochemical synthesis of a ternary transition metal sulfide nanosheets on nickel foam and energy storage application. J Alloys Compd 695:154–161

    CAS  Google Scholar 

  20. Cui Y, Zhang J, Jin C, Liu Y, Luo W, Zheng W (2019) Ionic liquid-controlled growth of NiCo2S4 3D hierarchical hollow nanoarrow arrays on Ni foam for superior performance binder free hybrid supercapacitors. Small 15:1804318

    Google Scholar 

  21. Xiao X, Zou LL, Pang H, Xu Q (2020) Synthesis of micro/nanoscaled metal–organic frameworks and their directelectrochemical applications. Chem Soc Rev 49:301–331

    CAS  Google Scholar 

  22. Wang K-B, Xun Q, Zhang QC (2020) Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem 2:100025

    Google Scholar 

  23. Li Y, Xu YX, Liu Y, Pang H (2019) Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 15:1902463

    Google Scholar 

  24. Xuan HC, Guan Y, Han XK, Liang XH, Xie ZG, Han PD, Wu YC (2020) Hierarchical MnCo-LDH/rGO@NiCo2S4 heterostructures on Ni foam with enhanced electrochemical properties for battery supercapacitors. Electrochim Acta 335:135691

    CAS  Google Scholar 

  25. Lu W, Yang M, Jiang X, Yu Y, Liu XC, Xing Y (2020) Template assisted synthesis of hierarchically hollow C/NiCo2S4 nanospheres electrode for high performance supercapacitors. Chem Eng J 382:122943

    CAS  Google Scholar 

  26. Yang P, Feng L, Hu J, Ling WQ, Wang SH, Shi JJ, Yang ZF, Wang FW (2020) Synthesis of the urchin-like NiS@NiCo2S4 composites on nickel foam for high-performance supercapacitors. ChemElectroChem 7:175–182

    CAS  Google Scholar 

  27. Wu WL, Niu D, Zhu JF, Gao Y, Wei D, Zhao CH, Wang CW, Wang F, Wang L, Yang LQ (2019) Hierarchical architecture of Ti3C2 PDA NiCo2S4 composite electrode as high-performance supercapacitors. Ceram Int 45:16261–16269

    CAS  Google Scholar 

  28. Huang XL, Gou L (2019) High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4 polyaniline. Appl Surf Sci 487:68–76

    CAS  Google Scholar 

  29. Han X, Chen Q, Zhang H, Ni Y, Zhang L (2019) Template synthesis of NiCo2S4/Co9S8 hollow spheres for high-performance asymmetric supercapacitors. Chem Eng J 368:513–524

    CAS  Google Scholar 

  30. Lu Y, Zhang Z, Liu XM, Wang WX, Peng T, Guo PF, Sun HB, Yan HL, Luo YS (2016) NiCo2S4 carbon nanotube nanocomposites with a chain-like architecture for enhanced supercapacitor performance. CrystEngComm 18:7696–7706

    CAS  Google Scholar 

  31. Luan Y, Zhang H, Yang F, Yan J, Zhu K, Ye K, Wang G, Cheng K, Cao D (2018) Rational design of NiCo2S4 nanoparticles @ N-doped CNT for hybrid supercapacitor. Appl Surf Sci 447:165–172

    CAS  Google Scholar 

  32. Beka LG, Li X, Xia X, Liu W (2017) MWCNT/NiCo2S4 as core/shell hybrid nanostructure for high performance supercapacitor. Diamond Relat Mater 73:80–86

    CAS  Google Scholar 

  33. Meng Ling-Yan, Wang Bin, Ma Ming-Guo, Lin Kai-Li (2016) The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem 1–2:63–83

    Google Scholar 

  34. Zhu YJ, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555

    CAS  Google Scholar 

  35. Xiao Y, Lei Y, Zheng B, Gu L, Wang Y, Xiao D (2015) Rapid microwave-assisted fabrication of 3D cauliflower-like NiCo2S4 architectures for asymmetric supercapacitors. RSC Adv 5:21604–21613

    CAS  Google Scholar 

  36. Xia G, Wang S (2019) Microwave-assisted facile and rapid synthesis of layered metal hydroxide nanosheet arrays towards high-performance aqueous hybrid supercapacitors. Ceram Int 45:20810–20817

    CAS  Google Scholar 

  37. Ni D, Chen Y, Yang X, Liu C, Cai K (2018) Microwave-assisted synthesis method for rapid synthesis of tin selenide electrode material for supercapacitors. J Alloys Compd 737:623–629

    CAS  Google Scholar 

  38. Li YH, Liu H, Xu J, Liu YY, Wang MR, Li J, Cui HT (2018) Hierarchical nanostructure-tuned super-high electrochemical stability of nickel cobalt sulfide. J Mater Chem A 6:19788–19797

    CAS  Google Scholar 

  39. Guo M, Gao H, Huang W, Wang J, Liu Z, Zhan C, Ding L, Tu J (2019) Microwave-assisted rapid synthesis of NiCo2S4 nanotube arrays on Ni foam for high-cycling-stability supercapacitors. J Alloys Compd 780:164–169

    CAS  Google Scholar 

  40. Wang F, Li G, Zheng J, Ma J, Yang C, Wang Q (2018) Microwave synthesis of three-dimensional nickel cobalt sulfide nanosheets grown on nickel foam for high-performance asymmetric supercapacitors. J Colloid Interface Sci 516:48–56

    CAS  Google Scholar 

  41. Yan T, Li R, Li ZJ (2016) Facile construction of three-dimensional NiCo2S4 with tremella-like morphology for high-performance supercapacitors. Mater Lett 167:234–237

    Google Scholar 

  42. Li Z, Xin Y, Jia H, Wang Z, Sun J, Zhou Q (2017) Rational design of coaxial MWCNT-COOH@NiCo2S4 hybrid for supercapacitors. J Mater Sci 52:9661–9672

    CAS  Google Scholar 

  43. Mohamed SG, Hussain I, Shim J (2018) One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 10:6620–6628

    CAS  Google Scholar 

  44. Rafai S, Qiao C, Naveed M, Wang Z, Younas W, Khalid S, Cao C (2019) Microwave-anion-exchange route to ultrathin cobalt-nickel-sulfide nanosheets for hybrid supercapacitors. Chem Eng J 362:576–587

    CAS  Google Scholar 

  45. Chen H, Jiang J, Zhao Y, Zhang L, Guo D, Xia D (2015) One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance. J Mater Chem A 3:428–437

    CAS  Google Scholar 

  46. Zhao FL, Huang WX, Shi Q, Zhou D, Zhao L, Zhang H (2017) Low temperature fabrication of hydrangea-like NiCo2S4 as electrode materials for high performance supercapacitors. Mater Lett 186:206–209

    CAS  Google Scholar 

  47. Choi C, Ashby D, Butts D, DeBlock R, Wei Q, Lau J, Dunn B (2020) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5:5–19

    Google Scholar 

  48. Guan BY, Yu L, Wang X, Song S, Lou XW (2017) Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv Mater 29:1605051

    Google Scholar 

  49. Gao Q, Wang X, Shi Z, Ye Z, Wang W, Zhang N, Hong Z, Zhi M (2018) Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem Eng J 331:185–193

    CAS  Google Scholar 

  50. Zheng Y, Wang X, Zhao W, Cao X, Liu J (2018) Phytic acid-assisted synthesis of ultrafine NiCo2S4 nanoparticles immobilized on reduced graphene oxide as high-performance electrode for hybrid supercapacitors. Chem Eng J 333:603–612

    CAS  Google Scholar 

  51. Chen Q, Miao J, Quan L, Cai D, Zhan H (2018) Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors. Nanoscale 10:4051–4060

    CAS  Google Scholar 

  52. Yang X, Niu H, Jiang H, Sun Z, Wang Q, Qu F (2018) One-step synthesis of NiCo2S4/Graphene composite for asymmetric supercapacitors with superior performances. ChemElectroChem 5:1576–1585

    CAS  Google Scholar 

  53. Liu P, Sui Y, Wei F, Qi J, Meng Q, Ren Y, He Y (2019) Facile synthesis of CoNi2S4 nanoparticles grown on carbon fiber cloth for supercapacitor application. J Mater Sci: Mater Electron 30:19077–19086

    CAS  Google Scholar 

  54. Li X, Li Q, Wu Y, Rui M, Zeng H (2015) Two-dimensional porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 7:19316–19323

    CAS  Google Scholar 

  55. Shen L, Yu L, Wu HB, Yu XY, Zhang X, Lou XW (2015) Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat Commun 6:6694

    CAS  Google Scholar 

  56. Chen H, Jiang J, Zhang L, Wan H, Qi T, Xia D (2013) Highly conductive NiCo(2)S(4) urchin-like nanostructures for high-rate pseudocapacitors. Nanoscal 5:8879–8883

    CAS  Google Scholar 

  57. Li L, Hu H, Ding S, Yan X, Wang C (2019) CoNi2S4 nanosheets on nitrogen-doped carbon foam as binder-free and flexible electrodes for high-performance asymmetric supercapacitors. Nanotechnology 30:495404

    CAS  Google Scholar 

  58. Shen Y, Zhang K, Chen B, Yang F, Xu K, Lu X (2019) Enhancing the electrochemical performance of nickel cobalt sulfides hollow nanospheres by structural modulation for asymmetric supercapacitors. J Colloid Interface Sci 557:135–143

    CAS  Google Scholar 

  59. Wang H, Wu D, Zhou J (2019) Gasified rice husk based RHAC/NiCo2S4 composite for high performance asymmetric supercapacitor. J Alloys Compd 811:152073

    CAS  Google Scholar 

  60. Liu T, Zheng Y, Zhao W, Cui L, Liu J (2019) Uniform generation of NiCo2S4 with 3D honeycomb-like network structure on carbon cloth as advanced electrode materials for flexible supercapacitors. J Colloid Interface Sci 556:743–752

    CAS  Google Scholar 

  61. Cai P, Liu T, Zhang L, Cheng B, Yu J (2020) ZIF-67 derived nickel cobalt sulfide hollow cages for high-performance supercapacitors. Appl Surf Sci 504:14501

    Google Scholar 

  62. Yuan Z, Zhang AT, Jiang D, Mao N, Tian JM, Huang WG, Liu R, Liu JQ (2020) Hollow 3D-framestructure modified with NiCo2S4 nanosheets and and spinous Fe2O3 nanowires as electrode materials for highperformance all-soild-state asymmetric supercapacitors. Chem Eur J 26:1–9

    Google Scholar 

  63. Yan SX, Luo SH, Feng J, Li PW, Guo R, Wang Q, Zhang YH, Liu YG, Bao S (2020) Rational design of flower-like FeCo2S4/reduced graphene oxide films: novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chem Eng J 381:122695

    CAS  Google Scholar 

  64. Khalafallah D, Wu Z, Zhi MJ, Hong ZL (2020) Rational design of porous structured nickel manganese sulfides hexagonal sheets-in-cage structures as an advanced electrode material for high-performance electrochemical capacitors. Chem Eur J 26:2251–2262

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Shenzhen Basic Research Program (Nos.JCYJ20190808141611189, JCYJ20170818100134570, and JCYJ20160422091418366) and Basic and Applied Research Fund of Guangdong Province (2020A1515011018). We are grateful to Instrumental Analysis Center of Shenzhen University (Xili Campus) for the help of SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglin Zhao.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 583 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Xie, D., Zhao, F. et al. Microwave rapid synthesis of nickel cobalt sulfides/CNTs composites as superior cycling ability electrode materials for supercapacitors. J Mater Sci 56, 1561–1576 (2021). https://doi.org/10.1007/s10853-020-05257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05257-3

Navigation