Skip to main content

Advertisement

Log in

Polymeric nanowrinkles: surface modification of polypropylene films in the VUV energy range

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of strategies for shape-programming polymer materials has been considerably growing. This is due to the possibility of shifting two to three-dimensional shapes producing nanotexturing, such as nanowrinkles. In this work, nanowrinkle patterns were produced in polypropylene (PP) films using a broadband non-monochromatic radiation ranging from 3 to 21 eV by a synchrotron source. The superficial modification was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Additionally, X-ray photoelectron (XPS) and Raman spectroscopy were used to study the chemical modifications of the PP samples. The surface modifications became more evident as the exposure time increased, proving that the formation of nanowrinkles presents a time-dependent behavior, clearly proved by AFM and SEM analysis. Another important aspect is that nanowrinkles consist of a thin layer compatible with the photon penetration depth in this energy range with almost no change in bulk. The spectroscopic results show crosslinking and unsaturated bonds formation increase as a function of time, which corroborates nanowrinkle formation via stress creation on the surface plane, and the relief of this stress outside the plane.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Rodríguez-Hernández J (2015) Wrinkled interfaces: taking advantage of surface instabilities to pattern polymer surfaces. Prog Polym Sci 42:1–41. https://doi.org/10.1016/j.progpolymsci.2014.07.008

    Article  CAS  Google Scholar 

  2. Zhao ZJ, Li X, Park SH (2015) Generation of various wrinkle shapes on single surface by controlling thickness of weakly polymerized layer. Mater Lett 155:125–129. https://doi.org/10.1016/j.matlet.2015.04.093

    Article  CAS  Google Scholar 

  3. Ahad UI, Andrzej B, Henryk F, Jerzy K, Barbara K, Tomasz C, Dermot B (2014) Surface modification of polymers for biocompatibility via exposure to extreme ultraviolet radiation. J Biomed Mater Res 102:3298–3310. https://doi.org/10.1002/jbm.a.34958

    Article  CAS  Google Scholar 

  4. Liu Y, Genzer J, Dickey MD (2016) 2D or not 2D: shape-programming polymer sheets. Prog Polym Sci 52:79–106. https://doi.org/10.1016/j.progpolymsci.2015.09.001

    Article  CAS  Google Scholar 

  5. Skurat V (2003) Vacuum ultraviolet photochemistry of polymers. Nucl Instrum Methods Phys Res B 208:27–34. https://doi.org/10.1016/S0168-583X(03)00636-0

    Article  CAS  Google Scholar 

  6. Hatano Y (1999) Interaction of photons with molecules—cross-sections for photoabsorption, photoionization, and photodissociation. Radiat Environ Biophys 38:239–247. https://doi.org/10.1007/s004110050164

    Article  CAS  Google Scholar 

  7. Nenner I, Beswick JA (1987) Molecular photodissociation and photoionization. In: Marr GV (ed) Handbook on Synchrotron Radiation. Elsevier, Amsterdam, pp 355–466. https://doi.org/10.1016/C2009-0-09951-6

    Chapter  Google Scholar 

  8. Li Y, Hayashi A, Saito M, Vacha M, Murase S, Sato H (2006) Degradation of aliphatic polyesters by vacuum ultraviolet irradiation. Polym J 38:395–399. https://doi.org/10.1295/polymj.38.395

    Article  CAS  Google Scholar 

  9. Kim YJ, Taniguchi Y, Murase K, Taguchi Y, Sugimura H (2009) Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding. Appl Surf Sci 255:3648–3654. https://doi.org/10.1016/j.apsusc.2008.10.009

    Article  CAS  Google Scholar 

  10. Ono M, Yamane H, Fukagawa H, Kera S, Yoshimura D, Okudaira KK, Morikawa E, Seki K, Ueno N (2005) UPS study of VUV-photodegradation of polytetrafluoroethylene (PTFE) ultrathin film by using synchrotron radiation. Nucl Instrum Methods Phys Res B 236:377–382. https://doi.org/10.1016/j.nimb.2005.03.280

    Article  CAS  Google Scholar 

  11. Ono M, Morikawa E (2004) Ultraviolet photoelectron spectroscopy study of synchrotron radiation-degraded polyethylene ultrathin films. J Phys Chem B 108:1894–1897. https://doi.org/10.1021/jp030509r

    Article  CAS  Google Scholar 

  12. Zhou P, Kizilkaya O, Morikawa E (2008) Electronic structure of photo-degraded polypropylene ultrathin films. Chem Phys Lett 465:241–244. https://doi.org/10.1016/j.cplett.2008.10.006

    Article  CAS  Google Scholar 

  13. Ahad UI, Budner B, Korczyc B, Fiedorowicz H, Bartnik A, Kostecki J, Burdynska S, Brabazon D (2014) Polycarbonate polymer surface modification by extreme ultraviolet (EUV) radiation. Acta Phys Pol A 125:94–98. https://doi.org/10.12693/APhysPolA.125.924

    Article  CAS  Google Scholar 

  14. Brazilian Synchrotron Light Laboratory. URL https://www.lnls.cnpem.br/

  15. Cavasso Filho RL, Homem MGP, Landers R, Naves de Brito A (2005) Advances on the Brazilian toroidal grating monochromator (TGM) beamline. J Electron Spectrosc Relat Phenom 144:1125–1127. https://doi.org/10.1016/j.elspec.2005.01.253

    Article  CAS  Google Scholar 

  16. Cavasso Filho RL, Homem MGP, Fonseca PT, Naves de Brito A (2007) A synchrotron beamline for delivering high purity vacuum ultraviolet photons. Rev Sci Instrum 78:115104. https://doi.org/10.1063/1.2813341

    Article  CAS  Google Scholar 

  17. Brazilian Nanotechnology National Laboratory. URL http://lnnano.cnpem.br/

  18. Annual book of ASTD standards (2009) D3359-07 Standard test methods for measuring adhesion by tape test, ASTD International, West Conshohocken, PA. https://doi.org/10.1520/D3359-17.

  19. Burmeister F, Coutinho L, Marinho R, Homem MGP, de Morais M, Mocellin A, Björneholm O, Sorensen S, Fonseca P, Lindgren A, de Brito AN (2010) Description and performance of an electron-ion coincidence TOF spectrometer used at the Brazilian synchrotron facility LNLS. J Electron Spectrosc Relat Phenom 180:6–13. https://doi.org/10.1016/j.elspec.2010.02.007

    Article  CAS  Google Scholar 

  20. Au JW, Cooper G, Brion CE (1993) The molecular and dissociative photoionization of ethane, propane, and n-butane: absolute oscillator strengths (10–80 eV) and breakdown pathways. Chem Phys 173:241–265. https://doi.org/10.1016/0301-0104(93)80143-W

    Article  CAS  Google Scholar 

  21. Koizumi H, Yoshimi T, Shinsaka K, Ukai M, Morita M, Hatano Y, Yagishita A, Ito K (1985) VUV-optical oscillator strength distributions of C3H6 and C4H8 isomers. J Chem Phys 82:4856–4861. https://doi.org/10.1063/1.448655

    Article  CAS  Google Scholar 

  22. Lide D (2004) CRC Handbook of Chemistry and Physics, 85th Edition, no. v. 85 in CRC Handbook of Chemistry and Physics, 85th Ed, Taylor & Francis. URL https://books.google.com.br/books?id=WDll8hA006AC.

  23. Araujo JR, Silva AM, Gouvea CP, Lopes ES, Santos RAA, Terrazos LA, Capaz RB, Achete CA, Maciel IO (2016) Phosphorous bonding in single wall carbon nanotubes studied by X-ray photoelectron spectroscopy and DFT calculations. Carbon 99:1–7. https://doi.org/10.1016/j.carbon.2015.11.059

    Article  CAS  Google Scholar 

  24. Chodak I (1999) Crosslinking of polypropylene. In: Karger-Kocsis J (ed) Polypropylene. Polymer Science and Technology Series, vol 2. Springer, Dordrecht, pp 128–134

    Google Scholar 

  25. Lee WK, Engel CJ, Huntington MD, Hu J, Odom TW (2015) Controlled three-dimensional hierarchical structuring by memory-based sequential wrinkling. Nano Lett 15:5624–5629. https://doi.org/10.1021/acs.nanolett.5b02394

    Article  CAS  Google Scholar 

  26. Huntington MD, Engel CJ, Hryn AJ, Odom TW (2013) Polymer nanowrinkles with continuously tunable wavelengths. ACS Appl Mater Interfaces 5:6438–6442. https://doi.org/10.1021/am402166d

    Article  CAS  Google Scholar 

  27. Basu SK, Scriven L, Francis L, McCormick A (2005) Mechanism of wrinkle formation in curing coatings. Prog Org Coat 53:1–16. https://doi.org/10.1016/j.porgcoat.2004.08.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the staff of the Brazilian Synchrotron National Facility (LNLS) (proposal TGM 17983, TGM-15928 and TGM-20150235) and Brazilian Nanotechnology National Laboratory (LNNano) (proposal AFM1-18242, AFM-20546, SEM 18226, XPS-18173 and XPS-20307) for their valuable help during the experiments. M.G.P.H., W.R.W and S.A.C acknowledge FAPESP for the financial support under grants 2015/08258-2, 2016/24936-3 and 2016/25703-2, respectively. This research was also supported by the Brazilian agency CAPES (Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra A. Cruz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitaroni, L.B., Cacuro, T.A., Costa, C.A.R. et al. Polymeric nanowrinkles: surface modification of polypropylene films in the VUV energy range. J Mater Sci 56, 9532–9543 (2021). https://doi.org/10.1007/s10853-021-05879-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05879-1

Navigation