Skip to main content

Advertisement

Log in

Optimization of energy-storage properties for lead-free relaxor-ferroelectric (1-x)Na0.5Bi0.5TiO3-xSr0.7Nd0.2TiO3 ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ferroelectrics are considered as the most promising energy-storage materials applied in advance power electronic devices due to excellent charge–discharge properties. However, the unsatisfactory energy-storage density is the paramount issue that limits their practical applications. In this work, the excellent energy-storage properties are achieved in (1-x)Na0.5Bi0.5TiO3-xSr0.7Nd0.2TiO3 ((1-x)NBT-xSNT) ferroelectric ceramics by a synergistic strategy, where SNT improves breakdown strength and enhances relaxation characteristic simultaneously. A high recoverable energy-storage density of 3.85 J cm−3 and an energy-storage efficiency of 85.3% under an applied electric field of 305 kV cm−1 are acquired in 0.5NBT-0.5SNT ceramic. Moreover, excellent temperature stability and frequency stability were also observed. The change rate of energy density is less than 10%, where the temperature and frequency in the range of 20–120 °C and 20–180 Hz, respectively. Meanwhile, an ultrahigh power density of 175 MW cm−3 together with a fast discharge time of 136 ns is realized at 250 kV cm−1. These excellent performances show that (1-x)NBT-xSNT ceramics have the potential to be used in pulsed power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Palneedi H, Peddigari M, Hwang G-T, Jeong D-Y, Ryu J (2018) High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater. https://doi.org/10.1002/adfm.201803665

    Article  Google Scholar 

  2. Pan Z, Hu D, Zhang Y, Liu J, Shen B, Zhai J (2019) Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J Mater Chem C 7:4072–4078. https://doi.org/10.1039/c9tc00087a

    Article  CAS  Google Scholar 

  3. Wang D, Fan Z, Zhou D, Khesro A, Murakami S, Feteira A, Zhao Q, Tan X, Reaney IM (2018) Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J Mater Chem A 6:4133–4144. https://doi.org/10.1039/c7ta09857j

    Article  CAS  Google Scholar 

  4. Zhang H, Wei T, Zhang Q, Ma W, Fan P, Salamon D, Zhang S-T, Nan B, Tan H, Ye Z-G (2020) A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J Mater Chem C 8:16648–16667. https://doi.org/10.1039/d0tc04381h

    Article  CAS  Google Scholar 

  5. Zhao L, Liu Q, Gao J, Zhang S, Li JF (2017) Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater. https://doi.org/10.1002/adma.201701824

    Article  Google Scholar 

  6. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y (2009) Progress in electrical energy storage system: a critical review. Prog Nat Sci 19:291–312. https://doi.org/10.1016/j.pnsc.2008.07.014

    Article  CAS  Google Scholar 

  7. Cao MS, Wang XX, Zhang M, Shu JC, Cao WQ, Yang HJ, Fang XY, Yuan J (2019) Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv Funct Mater. https://doi.org/10.1002/adfm.201807398

    Article  Google Scholar 

  8. Zhang M, Cao M-S, Shu J-C, Cao W-Q, Li L, Yuan J (2021) Electromagnetic absorber converting radiation for multifunction. Mater Sci Eng R Rep. https://doi.org/10.1016/j.mser.2021.100627

    Article  Google Scholar 

  9. Cao M, Wang X, Cao W, Fang X, Wen B, Yuan J (2018) Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small. https://doi.org/10.1002/smll.201800987

    Article  Google Scholar 

  10. Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective. J Electroceram 29:71–93. https://doi.org/10.1007/s10832-012-9742-3

    Article  CAS  Google Scholar 

  11. Veerapandiyan V, Benes F, Gindel T, Deluca M (2020) Strategies to improve the energy storage properties of perovskite lead-free relaxor ferroelectrics: a rev. Mater (Basel). https://doi.org/10.3390/ma13245742

    Article  Google Scholar 

  12. Zhou M, Liang R, Zhou Z, Dong X (2018) Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J Mater Chem C 6:8528–8537. https://doi.org/10.1039/c8tc03003k

    Article  CAS  Google Scholar 

  13. Qi H, Zuo R (2019) Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J Mater Chem A 7:3971–3978. https://doi.org/10.1039/c8ta12232f

    Article  CAS  Google Scholar 

  14. Yang H, Liu P, Yan F, Lin Y, Wang T (2019) A novel lead-free ceramic with layered structure for high energy storage applications. J Alloys Compd 773:244–249. https://doi.org/10.1016/j.jallcom.2018.09.252

    Article  CAS  Google Scholar 

  15. Wang W, Pu Y, Guo X, Ouyang T, Shi Y, Yang M, Li J, Shi R, Liu G (2019) Enhanced energy storage properties of lead-free (Ca0.5Sr0.5)1–1.5xLaxTiO3 linear dielectric ceramics within a wide temperature range. Ceram Int 45:14684–14690. https://doi.org/10.1016/j.ceramint.2019.04.188

    Article  CAS  Google Scholar 

  16. Zhang L, Pu Y, Chen M, Wei T, Peng X (2020) Novel Na0.5Bi0.5TiO3 based, lead-free energy storage ceramics with high power and energy density and excellent high-temperature stability. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123154

    Article  Google Scholar 

  17. Chen L, Wang H, Zhao P, Zhu C, Cai Z, Cen Z, Li L, Wang X (2019) Multifunctional BaTiO3-(Bi0.5Na0.5)TiO3-based MLCC with high-energy storage properties and temperature stability. J Am Ceram Soc 102:4178–4187. https://doi.org/10.1111/jace.16292

    Article  CAS  Google Scholar 

  18. Wang G, Lu Z, Li J, Ji H, Yang H, Li L, Sun S, Feteira A, Yang H, Zuo R, Wang D, Reaney IM (2020) Lead-free (Ba, Sr)TiO3-BiFeO3 based multilayer ceramic capacitors with high energy density. J Eur Ceram Soc 40:1779–1783. https://doi.org/10.1016/j.jeurceramsoc.2019.12.009

    Article  CAS  Google Scholar 

  19. Qu N, Du H, Hao X (2019) A new strategy to realize high comprehensive energy storage properties in lead-free bulk ceramics. J Mater Chem C 7:7993–8002. https://doi.org/10.1039/c9tc02088h

    Article  CAS  Google Scholar 

  20. Meng X, Zhao Y, Li Y, Hao X (2021) Simultaneously achieving ultrahigh energy density and power density in PbZrO3-based antiferroelectric ceramics with field-induced multistage phase transition. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.159149

    Article  Google Scholar 

  21. Liu X, Zhao Y, Sun N, Li Y, Hao X (2021) Ultra-high energy density induced by diversified enhancement effects in (Pb0.98−xLa0.02Cax)(Zr0.7Sn0.3)0.995O3 antiferroelectric multilayer ceramic capacitors. Chem Eng J. https://doi.org/10.1016/j.cej.2020.128032

    Article  Google Scholar 

  22. Li J, Li F, Xu Z, Zhang S (2018) Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv Mater 30,1802155:1-7. https://doi.org/10.1002/adma.201802155

    Article  CAS  Google Scholar 

  23. Wu Y, Fan Y, Liu N, Peng P, Zhou M, Yan S, Cao F, Dong X, Wang G (2019) Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J Mater Chem C 7:6222–6230. https://doi.org/10.1039/c9tc01239g

    Article  CAS  Google Scholar 

  24. Butnoi P, Manotham S, Jaita P, Randorn C, Rujijanagul G (2018) High thermal stability of energy storage density and large strain improvement of lead-free Bi0.5(Na0.40K0.10)TiO3 piezoelectric ceramics doped with La and Zr. J Eur Ceram Soc 38:3822–3832. https://doi.org/10.1016/j.jeurceramsoc.2018.04.024

    Article  CAS  Google Scholar 

  25. Le PG, Fisher JG, Moon WJ (2019) Effect of composition on the growth of single crystals of (1–x)(Na1/2Bi1/2)TiO3-xSrTiO3 by solid state crystal growth. Mater (Basel). https://doi.org/10.3390/ma12152357

    Article  Google Scholar 

  26. Hu D, Pan Z, Zhang X, Ye H, He Z, Wang M, Xing S, Zhai J, Fu Q, Liu J (2020) Greatly enhanced discharge energy density and efficiency of novel relaxation ferroelectric BNT–BKT-based ceramics. J Mater Chem C 8:591–601. https://doi.org/10.1039/c9tc05528b

    Article  CAS  Google Scholar 

  27. Yan F, Zhou X, He X, Bai H, Wu S, Shen B, Zhai J (2020) Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.105012

    Article  Google Scholar 

  28. Qiao X, Zhang F, Wu D, Chen B, Zhao X, Peng Z, Ren X, Liang P, Chao X, Yang Z (2020) Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124158

    Article  Google Scholar 

  29. Yang Y, Wang H, Bi L, Zheng Q, Fan G, Jie W, Lin D (2019) High energy storage density and discharging efficiency in La3+/Nb5+-co-substituted (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. J Eur Ceram Soc 39:3051–3056. https://doi.org/10.1016/j.jeurceramsoc.2019.04.031

    Article  CAS  Google Scholar 

  30. Lin Y, Li D, Zhang M, Yang H (2020) (Na0.5Bi0.5)0.7Sr0.3TiO3 modified by Bi(Mg2/3Nb1/3)O3 ceramics with high energy-storage properties and an ultrafast discharge rate. J Mater Chem C 8:2258–2264. https://doi.org/10.1039/c9tc06218a

    Article  CAS  Google Scholar 

  31. Qiao X, Sheng A, Wu D, Zhang F, Chen B, Liang P, Wang J, Chao X, Yang Z (2021) A novel multifunctional ceramic with photoluminescence and outstanding energy storage properties. Chem Eng J. https://doi.org/10.1016/j.cej.2020.127368

    Article  Google Scholar 

  32. Liu X, Yang T, Gong W (2021) Comprehensively enhanced energy-storage properties in (Pb1−3x/2Lax)(Zr0.995Ti0.005)O3 antiferroelectric ceramics via composition optimization. J Mater Chem C. https://doi.org/10.1039/d1tc02972j

    Article  Google Scholar 

  33. Yan F, Huang K, Jiang T, Zhou X, Shi Y, Ge G, Shen B, Zhai J (2020) Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Stor Mater 30:392–400. https://doi.org/10.1016/j.ensm.2020.05.026

    Article  Google Scholar 

  34. Li Q, Wang J, Liu Z, Dong G, Fan H (2015) Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3–0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J Mater Sci 51:1153–1160. https://doi.org/10.1007/s10853-015-9446-6

    Article  CAS  Google Scholar 

  35. Shi P, Zhu L, Gao W, Yu Z, Lou X, Wang X, Yang Z, Yang S (2019) Large energy storage properties of lead-free (1–x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBiAlO3 ceramics at broad temperature range. J Alloys Compd 784:788–793. https://doi.org/10.1016/j.jallcom.2019.01.077

    Article  CAS  Google Scholar 

  36. Qiao X, Wu D, Zhang F, Niu M, Chen B, Zhao X, Liang P, Wei L, Chao X, Yang Z (2019) Enhanced energy density and thermal stability in relaxor ferroelectric Bi0.5Na0.5TiO3-Sr0.7Bi0.2TiO3 ceramics. J Eur Ceram Soc 39:4778–4784. https://doi.org/10.1016/j.jeurceramsoc.2019.07.003

    Article  CAS  Google Scholar 

  37. Zheng P, Zhang JL, Tan YQ, Wang CL (2012) Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Mater 60:5022–5030. https://doi.org/10.1016/j.actamat.2012.06.015

    Article  CAS  Google Scholar 

  38. Li Y, Sun N, Du J, Li X, Hao X (2019) Stable energy density of a PMN–PST ceramic from room temperature to its Curie point based on the synergistic effect of diversified energy. J Mater Chem C 7:7692–7699. https://doi.org/10.1039/c9tc02172h

    Article  CAS  Google Scholar 

  39. Sun N, Li Y, Liu X, Hao X (2020) High energy-storage density under low electric field in lead-free relaxor ferroelectric film based on synergistic effect of multiple polar structures. J Power Sour. https://doi.org/10.1016/j.jpowsour.2019.227457

    Article  Google Scholar 

  40. Zhang L, Wang Z, Li Y, Chen P, Cai J, Yan Y, Zhou Y, Wang D, Liu G (2019) Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics. J Eur Ceram Soc 39:3057–3063. https://doi.org/10.1016/j.jeurceramsoc.2019.02.004

    Article  CAS  Google Scholar 

  41. Xu Q, Lanagan MT, Huang X, Xie J, Zhang L, Hao H, Liu H (2016) Dielectric behavior and impedance spectroscopy in lead-free BNT–BT–NBN perovskite ceramics for energy storage. Ceram Int 42:9728–9736. https://doi.org/10.1016/j.ceramint.2016.03.062

    Article  CAS  Google Scholar 

  42. Li Q, Yao Z, Ning L, Gao S, Hu B, Dong G, Fan H (2018) Enhanced energy-storage properties of (1–x)(0.7Bi0.5Na0.5TiO3-0.3Bi0.2Sr0.7TiO3)-xNaNbO3 lead-free ceramics. Ceram Int 44:2782–2788. https://doi.org/10.1016/j.ceramint.2017.11.018

    Article  CAS  Google Scholar 

  43. Yang H, Yan F, Lin Y, Wang T (2018) Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics. Energy Technol 6:357–365. https://doi.org/10.1002/ente.201700504

    Article  CAS  Google Scholar 

  44. Gao F, Dong X, Mao C, Liu W, Zhang H, Yang L, Cao F, Wang G, Jones J (2011) Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 94:4382–4386. https://doi.org/10.1111/j.1551-2916.2011.04731.x

    Article  CAS  Google Scholar 

  45. Liu X, Shi J, Zhu F, Du H, Li T, Liu X, Lu H (2018) Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy. J Mater 4:202–207. https://doi.org/10.1016/j.jmat.2018.05.006

    Article  Google Scholar 

  46. Jin L, Li F, Zhang S, Green DJ (2014) Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J Am Ceram Soc 97:1–27. https://doi.org/10.1111/jace.12773

    Article  CAS  Google Scholar 

  47. Zhang L, Zhao C, Zheng T, Wu J (2020) Large electrocaloric effect in (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics. ACS Appl Mater Inter 12:33934–33940. https://doi.org/10.1021/acsami.0c09343

    Article  CAS  Google Scholar 

  48. Cui C, Pu Y (2018) Effect of Sn substitution on the energy storage properties of 0.45SrTiO3–0.2Na0.5Bi0.5TiO3–0.35BaTiO3 ceramics. J Mater Sci 53:9830–9841. https://doi.org/10.1007/s10853-018-2282-8

    Article  CAS  Google Scholar 

  49. Zhang L, Pu Y, Chen M, Liu G (2018) Antiferroelectric-like properties in MgO-modified 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 ceramics for high power energy storage. J Eur Ceram Soc 38:5388–5395. https://doi.org/10.1016/j.jeurceramsoc.2018.08.010

    Article  CAS  Google Scholar 

  50. Yang L, Kong X, Cheng Z, Zhang S (2019) Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J Mater Chem A 7:8573–8580. https://doi.org/10.1039/c9ta01165j

    Article  CAS  Google Scholar 

  51. Yan F, Yang H, Lin Y, Wang T (2017) Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg Chem 56:13510–13516. https://doi.org/10.1021/acs.inorgchem.7b02181

    Article  CAS  Google Scholar 

  52. Wang C, Yan F, Yang H, Lin Y, Wang T (2018) Dielectric and ferroelectric properties of SrTiO3-Bi0.54Na0.46TiO3-BaTiO3 lead-free ceramics for high energy storage applications. J Alloys Compd 749:605–611. https://doi.org/10.1016/j.jallcom.2018.03.195

    Article  CAS  Google Scholar 

  53. Li D, Lin Y, Zhang M, Yang H (2020) Achieved ultrahigh energy storage properties and outstanding charge–discharge performances in (Na0.5Bi0.5)0.7Sr0.3TiO3-based ceramics by introducing a linear additive. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123729

    Article  Google Scholar 

  54. Liu G, Hu L, Wang Y, Wang Z, Yu L, Lv J, Dong J, Wang Y, Tang M, Guo B, Yu K, Yan Y (2020) Investigation of electrical and electric energy storage properties of La-doped Na0.3Sr0.4Bi0.3TiO3 based Pb-free ceramics. Ceram Int 46:19375–19384. https://doi.org/10.1016/j.ceramint.2020.04.280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major Program for Science and Technology of Inner Mongolia Autonomous Region (grant No. 2019ZD12), the Program for “Grassland Talents” Innovation Team of Inner Mongolia (Rare Earth Modified Lead-free Ferroelectric Multilayer Ceramic Capacitors Innovative Talent Team) and Scientific and Technological Development Foundation of the Central Guidance Local (2021ZY0008)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Li or Xihong Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Su, Q., Zhu, J. et al. Optimization of energy-storage properties for lead-free relaxor-ferroelectric (1-x)Na0.5Bi0.5TiO3-xSr0.7Nd0.2TiO3 ceramics. J Mater Sci 57, 217–228 (2022). https://doi.org/10.1007/s10853-021-06684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06684-6

Navigation