Skip to main content
Log in

A functionalized porous carbon from super absorbent polymer serving as the support of NiMo hydrodesulfurization catalyst

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multilayered, spatially ordered and highly permeable three-dimensional cross-network porous carbons were prepared from waste superabsorbent polymer (SAP) and were used as supports for NiMo hydrodesulfurization (HDS) catalysts. The acidified SAP-based carbon support and the corresponding catalyst were characterized by FT-IR, XRD, N2 adsorption–desorption, NH3-TPD, TG, SEM, TEM, XPS and H2-TPR. The results show that the acidification of the SAP-based carbon support optimizes the pore structure, increases the acidic surface functional groups, enhances the interaction between the metal and the support, and significantly improves the catalytic hydrodesulfurization performance of the catalyst. Liquid phase acidification can produce defects and wrinkles on surfaces of carbon material and form interconnected voids on spongy catalyst. Further acidification with nitric acid vapor is helpful to form a three-dimensional cross-network structure with multilayer, spatial order and high permeability. Under the same metal Mo loading and high reaction temperature, HDS performance of DBT and 4,6-DMDBT of the NiMo catalyst supported on acidified SAP is better than that of the commercial NiMo catalyst.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Saleh TA (2020) Characterization, determination and elimination technologies for sulfur from petroleum: toward cleaner fuel and a safe environment. Trends Environ Anal Chem 25:e00080. https://doi.org/10.1016/j.teac.2020.e00080

  2. Weng X, Cao L, Zhang G, Chen F, Zhao L, Zhang Y, Gao J, Xu C (2020) Ultradeep hydrodesulfurization of diesel: mechanisms, catalyst design strategies, and challenges. Ind Eng Chem Res 59:21261–21274. https://doi.org/10.1021/acs.iecr.0c04049

    Article  CAS  Google Scholar 

  3. Parlett CMA, Wilson K, Lee AF (2013) Hierarchical porous materials: catalytic applications. Chem Soc Rev 42:3876–3893

    Article  CAS  Google Scholar 

  4. Shafiq I, Shafique S, Akhter P, Yang W, Hussain M (2020) Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: a technical review. Catal Rev Sci Eng. 64:1–86. https://doi.org/10.1080/01614940.2020.1780824

    Article  CAS  Google Scholar 

  5. Kouzu M, Kuriki Y, Hamdy F, Sakanishi K, Sugimoto Y, Saito I (2004) Catalytic potential of carbon-supported NiMo-sulfide for ultra-deep hydrodesulfurization of diesel fuel. Appl Catal A 265:61–67. https://doi.org/10.1016/j.apcata.2004.01.003

    Article  CAS  Google Scholar 

  6. Eswaramoorthi I, Sundaramurthy V, Das N, Dalai AK, Adjaye J (2008) Application of multi-walled carbon nanotubes as efficient support to NiMo hydrotreating catalyst. Appl Catal A 339:187–195. https://doi.org/10.1016/j.apcata.2008.01.021

    Article  CAS  Google Scholar 

  7. Zhixin Yu LEFA, Moljord K, Blekkan EA, Walmsley JC, Chen D (2008) Hydrodesulfurization of thiophene on carbon nanofiber supported Co/Ni/Mo catalysts. Appl Catal B 84:482–489

    Article  Google Scholar 

  8. Prabhu N, Dalai AK, Adjaye J (2011) Hydrodesulphurization and hydrodenitrogenation of light gas oil using NiMo catalyst supported on functionalized mesoporous carbon. Appl Catal General 401:1–11. https://doi.org/10.1016/j.apcata.2011.04.019

    Article  CAS  Google Scholar 

  9. Rambabu N, Badoga S, Soni KK, Dalai AK, Adjaye J (2014) Hydrotreating of light gas oil using a NiMo catalyst supported on activated carbon produced from fluid petroleum coke. Front Chem Sci Eng 8:161–170. https://doi.org/10.1007/s11705-014-1430-1

    Article  CAS  Google Scholar 

  10. Pinilla JL, Puron H, Torres D, Suelves I, Millan M (2015) Ni-MoS2 supported on carbon nanofibers as hydrogenation catalysts: effect of support functionalization. Carbon 81:574–586. https://doi.org/10.1016/j.carbon.2014.09.092

    Article  CAS  Google Scholar 

  11. Ai F, Yin X, Hu R, Ma H, Liu W (2021) Research into the super-absorbent polymers on agricultural water. Agric Water Manage 245:106513–106519. https://doi.org/10.1016/j.agwat.2020.106513

    Article  Google Scholar 

  12. Mohebbi A, Mighri F, Ajji A, Rodrigue D (2015) current issues and challenges in polypropylene foaming: a review. Cell Polym 34:299–337. https://doi.org/10.1177/026248931503400602

    Article  CAS  Google Scholar 

  13. Akimova AY, Chigir AN, Zherdev YV (1992) New medical-purpose absorbent materials based on polyacrylic acid and alpha-cyanoacrylates, their structure and properties. Med Prog Technol 18:37–41

    CAS  Google Scholar 

  14. Toro RG, Calandra P, Federici F, de Caro T, Mezzi A, Cortese B, Pellegrino AL, Malandrino G, Caschera D (2020) Development of superhydrophobic, self-cleaning, and flame-resistant DLC/TiO2 melamine sponge for application in oil-water separation. J Mater Sci 55:2846–2859. https://doi.org/10.1007/s10853-019-04211-2

    Article  CAS  Google Scholar 

  15. Min D, Zhou W, Qing Y, Luo F, Zhu D (2017) Greatly enhanced microwave absorption properties of highly oriented flake carbonyl iron/epoxy resin composites under applied magnetic field. J Mater Sci 52:2373–2383. https://doi.org/10.1007/s10853-016-0532-1

    Article  CAS  Google Scholar 

  16. Rong J, Qiu F, Zhang T, Zhang X, Zhu Y, Xu J, Yang D, Dai Y (2017) A facile strategy toward 3D hydrophobic composite resin network decorated with biological ellipsoidal structure rapeseed flower carbon for enhanced oils and organic solvents selective absorption. Chem Eng J 322:397–407. https://doi.org/10.1016/j.cej.2017.04.049

    Article  CAS  Google Scholar 

  17. Sharma A, Verma N, Sharma A, Deva D, Sankararamakrishnan N (2010) Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: synthesis, characterization and application in arsenic removal. Chem Eng Sci 65:3591–3601. https://doi.org/10.1016/j.ces.2010.02.052

    Article  CAS  Google Scholar 

  18. Shen W, Li Z, Liu Y (2008) Surface chemical functional groups modification of porous carbon. Recent Patents Chem Eng 1:27–40

    Article  CAS  Google Scholar 

  19. Pradhan BK, Sandle NK (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37:1323–1332

    Article  CAS  Google Scholar 

  20. Liu Y, Qin W, Wang Q, Liu R, Liu H (2015) Glassy carbon nanofibers from electrospun cellulose nanofiber. J Mater Sci 50:563–569. https://doi.org/10.1007/s10853-014-8612-6

    Article  CAS  Google Scholar 

  21. Nakamura A, Iji M (2009) Enhancement of thermal diffusivity of poly(l-lactic acid) composites with a net-like structure of carbon fibers. J Mater Sci 44:4572–4576. https://doi.org/10.1007/s10853-009-3695-1

    Article  CAS  Google Scholar 

  22. Moreno-Castilla C, López-Ramón MV, Carrasco-Marin F (2000) Changes in surface chemistry of activated carbons by wet oxidation. Carbon 38:1995–2001. https://doi.org/10.1016/S0008-6223(00)00048-8

    Article  CAS  Google Scholar 

  23. Kelemen SR, Freund H (1985) A comparison of O2 and CO2 oxidation of glassy carbon surfaces. Carbon 23:723–729

    Article  CAS  Google Scholar 

  24. Yin H, Zhou T, Liu Y, Chai Y, Liu C (2011) NiMo/Al2O3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel. J Nat Gas Chem 20:441–448. https://doi.org/10.1016/s1003-9953(10)60204-6

    Article  CAS  Google Scholar 

  25. Chen X, Dong Y, Yu X, Wang Z, Liu Y, Liu J, Yao S (2021) Steric hindrance of methyl group on the reaction pathway of hydrodesulfurization in the presence of quinoline. Catal Lett 151:194–211. https://doi.org/10.1007/s10562-020-03290-0

    Article  CAS  Google Scholar 

  26. Hu J, Zhang Z, Wang F, Zheng S, Cai J, Qin J, Liu W, Liang S, Jiang X (2016) A controllable synthesis of nitrogen-doped mesoporous carbon supported MoS2 catalysts for hydrodesulfurization of thiophene. RSC Adv 6:101544–101551. https://doi.org/10.1039/C6RA22554C

    Article  CAS  Google Scholar 

  27. Bazuła PA, Lu A-H, Nitz J-J, Schüth F (2008) Surface and pore structure modification of ordered mesoporous carbons via a chemical oxidation approach. Micropor Mesopor Mater 108:266–275. https://doi.org/10.1016/j.micromeso.2007.04.008

    Article  CAS  Google Scholar 

  28. Prajapati YN, Verma N (2018) Hydrodesulfurization of thiophene on activated carbon fiber supported nimo catalysts. Energy Fuels 32:2183–2196. https://doi.org/10.1021/acs.energyfuels.7b03407

    Article  CAS  Google Scholar 

  29. Li N, Ma X, Zha Q, Kim K, Chen Y, Song C (2011) Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry. Carbon 49:5002–5013. https://doi.org/10.1016/j.carbon.2011.07.015

    Article  CAS  Google Scholar 

  30. Infantes-Molinaa A, Moreno-Leónb C, Paweleca B, Fierroa JLG, Rodríguez-Castellónb E, Jiménez-López A (2012) Simultaneous hydrodesulfurization and hydrodenitrogenation on MoP/SiO2 catalysts: effect of catalyst preparation method. Appl Catal B 87–99:113–114

    Google Scholar 

  31. Singh R, Kunzru D (2016) Hydrodesulfurization of dibenzothiophene on NiMo/c-Al2O3 washcoated monoliths. Fuel 163:180–188

    Article  CAS  Google Scholar 

  32. Kovacs TN, Hunyadi DV, Lucena ALAD, Szilágyi IM (2016) Thermal decomposition of ammonium molybdates. J Therm Anal Calorim 124:1013–1021

    Article  CAS  Google Scholar 

  33. Shaheen WM (2002) Thermal behaviour of pure and binary basic nickel carbonate and ammonium molybdate systems. Mater Lett 52:272–282

    Article  CAS  Google Scholar 

  34. Matsumoto K, Kobayashi A, Sasaki Y (1975) The crystal structure of sodium molybdate dihydrate, Na2MO4.2H2O. Bull Chem Soc Jpn 48:1009–1013

    Article  CAS  Google Scholar 

  35. Egorova M, Prins R (2004) Hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMo/γ-Al2O3, CoMo/γ-Al2O3, and Mo/γ-Al2O3 catalysts. J Catal 225:417–427

    Article  CAS  Google Scholar 

  36. Egorova M, Prins R (2006) The role of Ni and Co promoters in the simultaneous HDS of dibenzothiophene and HDN of amines over Mo/γ-Al2O3 catalysts. J Catal 241:162–172

    Article  CAS  Google Scholar 

  37. Kaluža L, Zdražil M (2001) Carbon-supported Mo catalysts prepared by a new impregnation method using a MoO3/water slurry: saturated loading, hydrodesulfurization activity and promotion by Co. Carbon 39:2023–2034. https://doi.org/10.1016/S0008-6223(01)00018-5

    Article  Google Scholar 

  38. Tuxen AK, Fuchtbauer HG, Temel B, Hinnemann B, Topsoe H, Knudsen KG, Besenbacher F, Lauritsen JV (2012) Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co-Mo-S hydrotreating catalysts. J Catal 295:146–154. https://doi.org/10.1016/j.jcat.2012.08.004

    Article  CAS  Google Scholar 

  39. Topsoe H, Hinnemann B, Norskov JK, Lauritsen JV, Besenbacher F, Hansen PL, Hytoft G, Egeberg RG, Knudsen KG (2005) The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts. Catal Today 107–108:12–22

    Article  Google Scholar 

  40. Lauritsen JV, Kibsgaard J, Olesen GH, Moses PG, Hinnemann B, Helveg S, Norskov JK, Clausen BS, Topsoe H, Largsgaard E, Besenbacher F (2007) Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. J Catal 249:220–233

    Article  CAS  Google Scholar 

  41. Moon G-H, Baehr A, Tueysuez H (2018) Structural engineering of 3D carbon materials from transition metal ion-exchanged Y zeolite templates. Chem Mater 30:3779–3788. https://doi.org/10.1021/acs.chemmater.8b00861

    Article  CAS  Google Scholar 

  42. Gao Q, Ofosu TNK, Ma S-G, Komvokis VG, Williams CT, Segawa K (2011) Catalyst development for ultra-deep hydrodesulfurization (HDS) of dibenzothiophenes. I: effects of Ni promotion in molybdenum-based catalysts. Catal Today 164:538–543. https://doi.org/10.1016/j.cattod.2010.10.016

    Article  CAS  Google Scholar 

  43. Chen W, Long X, Li M, Nie H, Li D (2017) Influence of active phase structure of CoMo/Al2O3 catalyst on the selectivity of hydrodesulfurization and hydrodearomatization. Catal Today 292:97–109. https://doi.org/10.1016/j.cattod.2016.09.029

    Article  CAS  Google Scholar 

  44. Zhou W, Wei Q, Zhou Y, Liu M, Ding S, Yang Q (2018) Hydrodesulfurization of 4,6-dimethyldibenzothiophene over NiMo sulfide catalysts supported on meso-microporous Y zeolite with different mesopore sizes. Appl Catal B 238:212–224. https://doi.org/10.1016/j.apcatb.2018.07.042

    Article  CAS  Google Scholar 

  45. Ninh TKT, Massin L, Laurenti D, Vrinat M (2011) A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts. Appl Catal pGeneral 407:29–39. https://doi.org/10.1016/j.apcata.2011.08.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the project of Liaoning Province Natural Science Fund Project, China (LJKZ0298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songdong Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interest.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Dong, Y., Jia, H. et al. A functionalized porous carbon from super absorbent polymer serving as the support of NiMo hydrodesulfurization catalyst. J Mater Sci 57, 4180–4196 (2022). https://doi.org/10.1007/s10853-022-06866-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06866-w

Navigation