Skip to main content

Advertisement

Log in

Two-dimensional auxetic pentagonal materials as water splitting photocatalysts with excellent performances

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fantastic two-dimensional (2-D) materials have been used in various fields, especially in green energy fields, because of their unique structures and accompanied physical properties. Here, we theoretically propose a novel 2-D materials family namely penta-B2X (X = S, Se, Te) that can perfectly meet the needs of photocatalytic water splitting. The penta-B2S, penta-B2Se and penta-B2Te all belong to semiconductors with indirect bandgaps of 1.889 eV, 1.998 eV and 1.928 eV, respectively. More importantly, we note that the penta-B2X (X = S, Se, Te) family has high (up to ~ 105 cm−1) and anisotropic light absorption coefficients in the visible-ultraviolet region, and their band edge positions are able to nicely satisfy the redox potentials at pH = 7 without external adjustment. Besides, they have high and anisotropic carrier mobility (up to ~ 103 cm2V−1 s−1) to ensure that the recombination of photogenerated carriers can be effectively reduced. Meanwhile, the penta-B2X (X = S, Se, Te) family possesses interesting in-plane negative Poisson's ratios (NPR) of − 0.141, − 0.117 and − 0.059, respectively. Thus, our results suggest that penta-B2X (X = S, Se, Te) can be used not only as promising water splitting photocatalysts with excellent performances but also for the design of funny nano electromechanical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  2. Gupta A, Sakthivel T, Seal S (2015) Recent development in 2D materials beyond graphene. Prog Mater Sci 73:44–126

    Article  CAS  Google Scholar 

  3. Yang FX, Cheng SS, Zhang XT, Ren XC, Li RJ, Dong HL, Hu WP (2018) 2D organic materials for optoelectronic applications. Adv Mater 30:1702415–1702441

    Article  CAS  Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  5. Sun YQ, Wu Q, Shi GQ (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  6. Bak T, Nowotny J, Rekas M, Sorrell CC (2002) Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy 27:991–1022

    Article  CAS  Google Scholar 

  7. Singh AK, Mathew K, Zhuang HL, Hennig RG (2015) Computational screening of 2D materials for photocatalysis. J Phys Chem Lett 6:1087–1098

    Article  CAS  Google Scholar 

  8. Sun YF, Sun ZH, Gao S, Cheng H, Liu QH, Piao JY et al (2012) Fabrication of flexible and freestanding zinc chalcogenide single layers. Nat Commun 3:1–7

    Article  Google Scholar 

  9. Sun YF, Cheng H, Gao S, Sun ZH, Li QH, Liu Q et al (2012) Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew Chem Int Ed Engl 51:8727–8731

    Article  CAS  Google Scholar 

  10. Rahman MZ, Kwong CW, Davey K, Qiao SZ (2016) 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ Sci 9:709–728

    Article  CAS  Google Scholar 

  11. Zhang SL, Xie MQ, Li FY, Yan Z, Li YF, Kan EJ et al (2016) Semiconducting group 15 monolayers: a broad range of band gaps and high carrier mobilities. Angew Chem 128:1698–1701

    Article  Google Scholar 

  12. Wang XC, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM et al (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

    Article  CAS  Google Scholar 

  13. Luo Y, Ren K, Wang S, Chou JP, Yu J, Sun ZM et al (2019) First-principles study on transition-metal dichalcogenide/BSe van der Waals heterostructures: a promising water-splitting photocatalyst. J Phys Chem C 123:22742–22751

    Article  CAS  Google Scholar 

  14. Ren K, Luo Y, Wang S, Chuo JP, Yu J, Tang WC et al (2019) A van der Waals heterostructure based on graphene-like gallium nitride and boron selenide: a high-efficiency photocatalyst for water splitting. ACS Omega 4:21689–21697

    Article  CAS  Google Scholar 

  15. Lai K, Yan CL, Gao LQ, Zhang WB (2018) AI3 (A= As, Sb) single layers and their vdW heterostructure for photocatalysis and solar cell applications. J Phys Chem C 122:7656–7663

    Article  CAS  Google Scholar 

  16. Lu BC, Zheng XY, Li ZS (2020) Two-dimensional lateral heterostructures of triphosphides: AlP3–GaP3 as a promising photocatalyst for water splitting. ACS Appl Mater Interfaces 12:53731–53738

    Article  CAS  Google Scholar 

  17. Zhuang HL, Hennig RG (2013) Single-layer group-III monochalcogenide photocatalysts for water splitting. Chem Mater 25:3232–3238

    Article  CAS  Google Scholar 

  18. Chen WZ, Huo XH, Shi XQ, Pan H (2018) Two-dimensional janus transition metal oxides and chalcogenides: multifunctional properties for photocatalysts, electronics, and energy conversion. ACS Appl Mater Interfaces 10:35289–35295

    Article  CAS  Google Scholar 

  19. Zhang SH, Zhou J, Wang Q, Chen XS, Kawazoe Y, Jena P (2015) Penta-graphene: a new carbon allotrope. Proc Natl Acad USA 112:2372–2377

    Article  CAS  Google Scholar 

  20. Xiao B, Li YC, Yu XF, Cheng JB (2016) Penta-graphene: a promising anode material as the Li/Na-ion battery with both extremely high theoretical capacity and fast charge/discharge rate. ACS Appl Mater Interfaces 8:35342–35352

    Article  CAS  Google Scholar 

  21. Xu XF, Varshney V, Lee J, Zhang T, Wohlwend JL, Roy AK et al (2016) Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity. Nano Lett 16:3925–3935

    Article  CAS  Google Scholar 

  22. Cheng MQ, Chen Q, Yang K, Huang WQ, Hu WY, Huang GF (2019) Penta-graphene as a potential gas sensor for NOx detection. Nanoscale Res Lett 14:1–8

    Article  CAS  Google Scholar 

  23. Gao ZB, Wang JS (2020) Thermoelectric penta-silicene with a high room-temperature figure of merit. ACS Appl Mater Interfaces 12:14298–14307

    Article  CAS  Google Scholar 

  24. Li FY, Tu KX, Zhang HJ, Chen ZF (2015) Flexible structural and electronic properties of A pentagonal B2C monolayer via external strain: a computational investigation. Phys Chem Chem Phys 17:24151–24156

    Article  CAS  Google Scholar 

  25. Zhang T, Ma YD, Huang BB, Dai Y (2019) Two-dimensional penta-BN2 with high specific capacity for Li–ion batteries. ACS Appl Mater Interfaces 11:6104–6110

    Article  CAS  Google Scholar 

  26. Li G, Yin SQ, Tan CY, Chen LJ, Yu MX, Li L et al (2021) Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy. Adv Funct Mater 31:2104787–2104793

    Article  CAS  Google Scholar 

  27. Li PY, Zhang JT, Zhu C, Shen WF, Hu CG, Fu W et al (2021) Penta-PdPSe: a new 2D pentagonal material with highly in-plane optical, electronic, and optoelectronic anisotropy. Adv Mater 33:2102541–2102552

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmuller J (1996) Efficient Iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  29. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  30. Gonze X, Lee CY (1997) Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B Condens Matter Mater Phys 55:10355–10368

    Article  CAS  Google Scholar 

  31. Cimas Á, Tielens F, Sulpizi M, Gaigeot MP, Costa D (2014) The amorphous silica–liquid water interface studied by ab initio molecular dynamics (AIMD): local organization in global disorder. J. Phys. Condens. Matter. 26:244106–244115

    Article  CAS  Google Scholar 

  32. Deák P, Aradi B, Frauenheim T, Janzén E, Gali A (2010) Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 81:153203–153206

    Article  CAS  Google Scholar 

  33. Andrew RC, Mapasha RE, Ukpong AM, Chetty N (2012) Mechanical properties of graphene and boronitrene. Phys. Rev. B 85:125428–125436

    Article  CAS  Google Scholar 

  34. Ding Y, Wang YL (2013) Density functional theory study of the silicene-like SiX and XSi3 (X= B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties. J Phys Chem C 117:18266–18278

    Article  CAS  Google Scholar 

  35. Wang V, Geng WT (2017) Lattice defects and the mechanical anisotropy of borophene. J Phys Chem C 121:10224–10232

    Article  CAS  Google Scholar 

  36. Hopcroft MA, Nix WD, Kenny TW (2010) What is the young’s modulus of silicon? J Microelectromech Syst 19:229–238

    Article  CAS  Google Scholar 

  37. Lee CG, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  CAS  Google Scholar 

  38. Wang SS, Liu Y, Yu ZM, Sheng XL, Zhu LY, Guan S et al (2018) Monolayer Mg2C: negative Poisson’s ratio and unconventional two-dimensional emergent fermions. Phys Rev Mater 2:104003–104011

    Article  CAS  Google Scholar 

  39. Jiang JW, Park HS (2014) Negative poisson’s ratio in single-layer black phosphorus. Nat Commun 5:1–7

    Article  Google Scholar 

  40. Wei Q, Peng X (2014) Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104:251915–251919

    Article  CAS  Google Scholar 

  41. Qin GZ, Qin ZZ (2020) Negative Poisson’s ratio in two-dimensional honeycomb structures. NPJ Comput Mater 6:1–6

    Article  CAS  Google Scholar 

  42. Peng R, Ma YD, He ZL, Huang BB, Kou LZ, Dai Y (2019) Single-layer Ag2S: a two-dimensional bidirectional auxetic semiconductor. Nano Lett 19:1227–1233

    Article  CAS  Google Scholar 

  43. Cheng ZS, Zhang XM, Zhang H, Liu HY, Yu X, Dai XF, Liu GD, Chen GF (2022) Binary pentagonal auxetic materials for photocatalysis and energy storage with outstanding performances. Nanoscale 14:2041–2051

    Article  CAS  Google Scholar 

  44. Chen SY, Wang LW (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659–3666

    Article  CAS  Google Scholar 

  45. Li JT, Wu NQ (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5:1360–1384

    Article  CAS  Google Scholar 

  46. Sun SS, Meng FC, Xu YF, He J, Ni YX, Wang HY (2019) Flexible, auxetic and strain-tunable two dimensional penta-X2C family as water splitting photocatalysts with high carrier mobility. J Mater Chem A 7:7791–7799

    Article  CAS  Google Scholar 

  47. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11:179–209

    Article  CAS  Google Scholar 

  48. Zhan LB, Yang CL, Wang MS, Ma XG (2020) 2D XBiSe3 (X= As, Sb) monolayers with high anisotropic mobility and enhanced optical absorption in visible light region. Appl Surf Sci 530:147137–147144

    Article  CAS  Google Scholar 

  49. Naseri M, Jalilian J (2017) Electronic and optical investigations of Be2C monolayer: under stress and strain conditions. Mater Res Bull 88:49–55

    Article  CAS  Google Scholar 

  50. Kuzmenko AB (2005) Kramers–Kronig constrained variational analysis of optical spectra. Rev Sci Instrum 76:083108–083116

    Article  CAS  Google Scholar 

  51. Saha S, Sinha TP, Mookerjee A (2000) Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys Rev B 62:8828–8834

    Article  CAS  Google Scholar 

  52. Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72–80

    Article  CAS  Google Scholar 

  53. Zhang Q, Wang X, Yang SL (2021) δ-SnS: an emerging bidirectional auxetic direct semiconductor with desirable carrier mobility and high-performance catalytic behavior toward the water-splitting reaction. ACS Appl Mater Interfaces 13:31934–31946

    Article  CAS  Google Scholar 

  54. Peng R, Ma YD, Huang BB, Dai Y (2019) Two-dimensional Janus PtSSe for photocatalytic water splitting under the visible or infrared light. J Mater Chem A 7:603–610

    Article  CAS  Google Scholar 

  55. Sun SS, Meng FC, Wang HY, Wang H, Ni YX (2018) Novel two-dimensional semiconductor SnP3: high stability, tunable bandgaps and high carrier mobility explored using first-principles calculations. J Mater Chem A 6:11890–11897

    Article  CAS  Google Scholar 

  56. Phuc HV, Hieu NN, Hoi BD, Hieu NV, Thu TV, Hung NM et al (2018) Tuning the electronic properties, effective mass and carrier mobility of MoS2 monolayer by strain engineering: first-principle calculations. J Electron Mater 47:730–736

    Article  CAS  Google Scholar 

  57. Zhang X, Zhao XD, Wu DH, Jing Y, Zhou Z (2016) MnPSe3 monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility. Adv Sci 3:1600062–1600066

    Article  CAS  Google Scholar 

  58. Jing Y, Zhou ZP, Zhang J, Huang CB, Li YF, Wang F (2019) SnP2S6 monolayer: a promising 2D semiconductor for photocatalytic water splitting. Phys Chem Chem Phys 21:21064–21069

    Article  CAS  Google Scholar 

  59. Jin H, Li JW, Dai Y, Wei YD (2017) Engineering the electronic and optoelectronic properties of InX (X= S, Se, Te) monolayers via strain. Phys Chem Chem Phys 19:4855–4860

    Article  CAS  Google Scholar 

  60. Lv XS, Wei W, Sun QL, Li FP, Huang BB, Dai Y (2017) Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility. Appl Catal B Environ 217:275–284

    Article  CAS  Google Scholar 

  61. Zhao P, Ma YD, Lv XS, Li MM, Huang BB, Dai Y (2018) Two-dimensional III2–VI3 materials: Promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy 51:533–538

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51871089), the project for Science and Technology Correspondent of Tianjin City (No. 20YDTPJC01710) and S&T Program of Hebei (No. 20311001D and A2021202012). The work was also supported by the open subject of State Key Laboratory of Research and Comprehensive Utilization of Rare Earth Resources in Baiyun Ebo (No. 2020z2123) and the State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology (No. EERI_PI2020009). One of the authors (X.M. Zhang) acknowledges the financial support from Young Elite Scientists Sponsorship Program by Tianjin and the Overseas Scientists Sponsorship Program by Hebei Province (C20200319 and C20210330).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Zhang, Guodong Liu or Guifeng Chen.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Joshua Tong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1152 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Zhang, X., Zhang, H. et al. Two-dimensional auxetic pentagonal materials as water splitting photocatalysts with excellent performances. J Mater Sci 57, 7667–7679 (2022). https://doi.org/10.1007/s10853-022-07130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07130-x

Navigation