Skip to main content
Log in

Review of recent progress on in situ TEM shear deformation: a retrospective and perspective view

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Advances in the use of in situ transmission electron microscopy (TEM) to study mechanical deformation have enabled a direct correlation of mechanical properties with microstructures, in particular, atomic-level defect dynamic processes. Shear deformation of metallic materials has been noticed to lead to unique microstructural features with superior properties that would be difficult to achieve by traditional metallurgical processes. However, in contrast to the case of in situ TEM studies of structural evolution under tension, compression, and bending, in situ TEM probing of dynamic processes during direct shear loading, especially at microscales and nanoscales, is very limited. This paper reviews recent progress on the development of in situ TEM for studying shear deformation in terms of both the technique and the scientific insights that have been gained. In addition, we discuss current challenges encountered in the use of in situ TEM for shear deformation, such as the limited total strain, strain rate, and spatial and temporal resolution. To provide perspective, we present promising opportunities for in situ TEM studies with pure shear loading by taking advantage of the integration of advanced imaging techniques both in TEM and scanning transmission electron microscopy domains, advanced electron detectors, highly efficient chemical analysis, data-driven machine learning, and environmental conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wang C, Li F, Wang L, Qiao H (2012) Review on modified and novel techniques of severe plastic deformation. Sci China Technol Sci 55:2377–2390. https://doi.org/10.1007/s11431-012-4954-y

    Article  Google Scholar 

  2. Gray GT (2012) High-strain-rate deformation: mechanical behavior and deformation substructures induced. Ann Rev Mater Res 42:285–303. https://doi.org/10.1146/annurev-matsci-070511-155034

    Article  CAS  Google Scholar 

  3. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT (2006) Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58:33–39. https://doi.org/10.1007/s11837-006-0213-7

    Article  Google Scholar 

  4. Bagheri S, Guagliano M (2009) Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys. Surf Eng 25:3–14. https://doi.org/10.1179/026708408X334087

    Article  CAS  Google Scholar 

  5. Faraji G, Kim HS (2017) Review of principles and methods of severe plastic deformation for producing ultrafine-grained tubes. Mater Sci Technol 33:905–923. https://doi.org/10.1080/02670836.2016.1215064

    Article  CAS  Google Scholar 

  6. Meyers MA, Mishra A, Benson DJ (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556. https://doi.org/10.1016/j.pmatsci.2005.08.003

    Article  CAS  Google Scholar 

  7. Mansoor P, Dasharath SM (2020) Microstructural and mechanical properties of magnesium alloy processed by severe plastic deformation (SPD) – A review. Mater Today Proc 20:145–154. https://doi.org/10.1016/j.matpr.2019.10.088

    Article  CAS  Google Scholar 

  8. Pippan R, Scheriau S, Hohenwarter A, Hafok M (2008) Advantages and limitations of HPT: A Review. Mater Sci Forum 584–586:16–21. https://www.scientific.net/msf.584-586.16

  9. Chen X, Schneider R, Gumbsch P, Greiner C (2018) Microstructure evolution and deformation mechanisms during high rate and cryogenic sliding of copper. Acta Mater 161:138–149. https://doi.org/10.1016/j.actamat.2018.09.016

    Article  CAS  Google Scholar 

  10. Singh JB, Wen JG, Bellon P (2008) Nanoscale characterization of the transfer layer formed during dry sliding of Cu–15wt.% Ni–8wt.% Sn bronze alloy. Acta Mater 56:3053–3064. https://doi.org/10.1016/j.actamat.2008.02.040

    Article  CAS  Google Scholar 

  11. Beyerlein IJ, Zhang X, Misra A (2014) Growth twins and deformation twins in metals. Ann Rev Mater Res 44:329–363. https://doi.org/10.1146/annurev-matsci-070813-113304

    Article  CAS  Google Scholar 

  12. Hughes DA, Hansen N (2001) Graded nanostructures produced by sliding and exhibiting universal behavior. Phys Rev Lett 87:135503. https://doi.org/10.1103/PhysRevLett.87.135503

    Article  CAS  Google Scholar 

  13. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975. https://doi.org/10.1126/science.277.5334.1971

    Article  CAS  Google Scholar 

  14. Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529. https://doi.org/10.1038/nmat1403

    Article  CAS  Google Scholar 

  15. Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–989

    Article  CAS  Google Scholar 

  16. Kiener D, Grosinger W, Dehm G, Pippan R (2008) A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater 56:580–592. https://doi.org/10.1016/j.actamat.2007.10.015

    Article  CAS  Google Scholar 

  17. Wang J, Mao SX (2016) Atomistic perspective on in situ nanomechanics. Extreme Mech Lett 8:127–139. https://doi.org/10.1016/j.eml.2016.02.006

    Article  Google Scholar 

  18. Oh SH, Legros M, Kiener D, Dehm G (2009) In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal. Nat Mater 8:95–100. https://doi.org/10.1038/nmat2370

    Article  CAS  Google Scholar 

  19. Budrovic Z, Petegem SV, Derlet PM et al (2005) Footprints of deformation mechanisms during in situ x-ray diffraction: nanocrystalline and ultrafine grained Ni. Appl Phys Lett 86:231910. https://doi.org/10.1063/1.1947385

    Article  CAS  Google Scholar 

  20. Espinosa HD, Bernal RA, Filleter T (2012) In situ TEM electromechanical testing of nanowires and nanotubes. Small 8:3233–3252. https://doi.org/10.1002/smll.201200342

    Article  CAS  Google Scholar 

  21. Legros M (2014) In situ mechanical TEM: seeing and measuring under stress with electrons. C R Phys 15:224–240. https://doi.org/10.1016/j.crhy.2014.02.002

    Article  CAS  Google Scholar 

  22. Shan ZW, Mishra RK, Syed Asif SA, Warren OL, Minor AM (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7:115–119. https://doi.org/10.1038/nmat2085

    Article  CAS  Google Scholar 

  23. Minor AM, Syed Asif SA, Shan Z et al (2006) A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5:697–702. https://doi.org/10.1038/nmat1714

    Article  CAS  Google Scholar 

  24. Wang J, Li N, Anderoglu O et al (2010) Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater 58:2262–2270. https://doi.org/10.1016/j.actamat.2009.12.013

    Article  CAS  Google Scholar 

  25. Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Experimental observations of stress-driven grain boundary migration. Science 326:1686–1690. https://doi.org/10.1126/science.1178226

    Article  CAS  Google Scholar 

  26. Merkle AP, Erdemir A, Eryilmaz OL, Johnson JA, Marks LD (2010) In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon 48:587–591. https://doi.org/10.1016/j.carbon.2009.08.036

    Article  CAS  Google Scholar 

  27. Anantheshwara K, Bobji MS (2010) In situ transmission electron microscope study of single asperity sliding contacts. Tribol Int 43:1099–1103. https://doi.org/10.1016/j.triboint.2009.12.066

    Article  CAS  Google Scholar 

  28. Oviedo JP, Kc S, Lu N et al (2015) In situ TEM characterization of shear-stress-induced interlayer sliding in the cross section view of molybdenum disulfide. ACS Nano 9:1543–1551. https://doi.org/10.1021/nn506052d

    Article  CAS  Google Scholar 

  29. Liao Y, Hoffman E, Marks LD (2015) Nanoscale abrasive wear of CoCrMo in in situ TEM sliding. Tribol Lett 57:28. https://doi.org/10.1007/s11249-015-0471-z

    Article  CAS  Google Scholar 

  30. Liao Y, Marks LD (2015) Direct observation of layer-by-layer wear. Tribol Lett 59:46. https://doi.org/10.1007/s11249-015-0567-5

    Article  CAS  Google Scholar 

  31. Zhu Q, Cao G, Wang J et al (2019) In situ atomistic observation of disconnection-mediated grain boundary migration. Nat Commun 10:156. https://doi.org/10.1038/s41467-018-08031-x

    Article  CAS  Google Scholar 

  32. Yu Q, Legros M, Minor AM (2015) In situ TEM nanomechanics. MRS Bull 40:62–70. https://doi.org/10.1557/mrs.2014.306

    Article  Google Scholar 

  33. Imrich PJ, Kirchlechner C, Kiener D, Dehm G (2015) In situ TEM microcompression of single and bicrystalline samples: insights and limitations. JOM 67:1704–1712. https://doi.org/10.1007/s11837-015-1440-6

    Article  CAS  Google Scholar 

  34. Kacher J, Zhu T, Pierron O, Spearot DE (2019) Integrating in situ TEM experiments and atomistic simulations for defect mechanics. Curr Opin Solid State Mater Sci 23:117–128. https://doi.org/10.1016/j.cossms.2019.03.003

    Article  CAS  Google Scholar 

  35. Bhowmick S, Espinosa H, Jungjohann K, Pardoen T, Pierron O (2019) Advanced microelectromechanical systems-based nanomechanical testing: beyond stress and strain measurements. MRS Bull 44:487–493. https://doi.org/10.1557/mrs.2019.123

    Article  Google Scholar 

  36. Wetscher F, Stock R, Pippan R (2007) Changes in the mechanical properties of a pearlitic steel due to large shear deformation. Mater Sci Eng A 445–446:237–243. https://doi.org/10.1016/j.msea.2006.09.026

    Article  CAS  Google Scholar 

  37. Azushima A, Aoki K (2002) Properties of ultrafine-grained steel by repeated shear deformation of side extrusion process. Mater Sci Eng, A 337:45–49. https://doi.org/10.1016/S0921-5093(02)00005-9

    Article  Google Scholar 

  38. Jacobs TDB, Greiner C, Wahl KJ, Carpick RW (2019) Insights into tribology from in situ nanoscale experiments. MRS Bull 44:478–486. https://doi.org/10.1557/mrs.2019.122

    Article  Google Scholar 

  39. Raabe D, Choi P-P, Li Y et al (2010) Metallic composites processed via extreme deformation: toward the limits of strength in bulk materials. MRS Bull 35:982–991. https://doi.org/10.1557/mrs2010.703

    Article  CAS  Google Scholar 

  40. Lee S, Im J, Yoo Y et al (2014) Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nat Commun 5:3033. https://doi.org/10.1038/ncomms4033

    Article  CAS  Google Scholar 

  41. Kondo S, Mitsuma T, Shibata N, Ikuhara Y (2016) Direct observation of individual dislocation interaction processes with grain boundaries. Sci Adv 2:e1501926. https://doi.org/10.1126/sciadv.1501926

    Article  CAS  Google Scholar 

  42. Kiener D, Minor AM (2011) Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing. Nano Lett 11:3816–3820. https://doi.org/10.1021/nl201890s

    Article  CAS  Google Scholar 

  43. Guo H, Chen K, Oh Y et al (2011) Mechanics and dynamics of the strain-induced M1–M2 structural phase transition in individual VO(2) nanowires. Nano Lett 11:3207–3213. https://doi.org/10.1021/nl201460v

    Article  CAS  Google Scholar 

  44. Mompiou F, Legros M (2015) Quantitative grain growth and rotation probed by in situ TEM straining and orientation mapping in small grained Al thin films. Scripta Mater 99:5–8. https://doi.org/10.1016/j.scriptamat.2014.11.004

    Article  CAS  Google Scholar 

  45. Feng L, Hao R, Lambros J, Dillon SJ (2018) The influence of dopants and complexion transitions on grain boundary fracture in alumina. Acta Mater 142:121–130. https://doi.org/10.1016/j.actamat.2017.09.002

    Article  CAS  Google Scholar 

  46. Samira R, Vakahi A, Eliasy R, Sherman D, Lachman N (2021) Mechanical and compositional implications of gallium ion milling on epoxy resin. Polymers 13:2640. https://doi.org/10.3390/polym13162640

    Article  CAS  Google Scholar 

  47. Sato T, Ishida T, Nabeya S, Fujita H (2010) Nano-scale observation of frictional deformation at Ag single point contact with MEMS-in-TEM setup. J Phys: Conf Ser 258:012005. https://doi.org/10.1088/1742-6596/258/1/012005

    Article  CAS  Google Scholar 

  48. Vishnubhotla SB, Chen R, Khanal SR et al (2019) Quantitative measurement of contact area and electron transport across platinum nanocontacts for scanning probe microscopy and electrical nanodevices. Nanotechnology 30:045705. https://doi.org/10.1088/1361-6528/aaebd6

    Article  CAS  Google Scholar 

  49. Zhu Q, Huang Q, Guang C et al (2020) Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility. Nat Commun 11:3100. https://doi.org/10.1038/s41467-020-16869-3

    Article  CAS  Google Scholar 

  50. Tian L, Li J, Sun J, Ma E, Shan ZW (2013) Visualizing size-dependent deformation mechanism transition in Sn. Sci Rep 3:2113. https://doi.org/10.1038/srep02113

    Article  Google Scholar 

  51. Haque MA, Saif MTA (2002) In situ tensile testing of nano-scale specimens in SEM and TEM. Exp Mech 42:123–128. https://doi.org/10.1007/BF02411059

    Article  CAS  Google Scholar 

  52. Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci USA 102:14503–14508. https://doi.org/10.1073/pnas.0506544102

    Article  CAS  Google Scholar 

  53. Huang JY, Chen S, Ren ZF et al (2006) Kink formation and motion in carbon nanotubes at high temperatures. Phys Rev Lett 97:075501. https://doi.org/10.1103/PhysRevLett.97.075501

    Article  CAS  Google Scholar 

  54. Huang JY, Chen S, Ren ZF et al (2007) Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high temperatures. Phys Rev Lett 98:185501. https://doi.org/10.1103/PhysRevLett.98.185501

    Article  CAS  Google Scholar 

  55. Wang J, Sansoz F, Huang J et al (2013) Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat Commun 4:1742. https://doi.org/10.1038/ncomms2768

    Article  CAS  Google Scholar 

  56. Wang J, Zeng Z, Weinberger CR, Zhang Z, Zhu T, Mao SX (2015) In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten. Nat Mater 14:594–600. https://doi.org/10.1038/nmat4228

    Article  CAS  Google Scholar 

  57. Chen CQ, Pei YT, De Hosson JTM (2010) Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Mater 58:189–200. https://doi.org/10.1016/j.actamat.2009.08.070

    Article  CAS  Google Scholar 

  58. He Y, Zhong L, Fan F, Wang C, Zhu T, Mao SX (2016) In situ observation of shear-driven amorphization in silicon crystals. Nat Nanotechnol 11:866–871. https://doi.org/10.1038/nnano.2016.166

    Article  CAS  Google Scholar 

  59. Withey EA, Minor AM, Chrzan DC, Morris JW Jr, Kuramoto S (2010) The deformation of Gum Metal through in situ compression of nanopillars. Acta Mater 58:2652–2665. https://doi.org/10.1016/j.actamat.2009.12.052

    Article  CAS  Google Scholar 

  60. Shan ZW, Li J, Cheng YQ et al (2008) Plastic flow and failure resistance of metallic glass: insight from in situ compression of nanopillars. Phys Rev B 77:155419. https://doi.org/10.1103/PhysRevB.77.155419

    Article  CAS  Google Scholar 

  61. Wang JJ, Lockwood AJ, Peng Y, Xu X, Bobji MS, Inkson BJ (2009) The formation of carbon nanostructures by in situ TEM mechanical nanoscale fatigue and fracture of carbon thin films. Nanotechnology 20:305703. https://doi.org/10.1088/0957-4484/20/30/305703

    Article  CAS  Google Scholar 

  62. Sato T, Ishida T, Jalabert L, Fujita H (2012) Real-time transmission electron microscope observation of nanofriction at a single Ag asperity. Nanotechnology 23:505701. https://doi.org/10.1088/0957-4484/23/50/505701

    Article  CAS  Google Scholar 

  63. Mayr C, Eggeler G, Webster GA, Peter G (1995) Double shear creep testing of superalloy single crystals at temperatures above 1000 °C. Mater Sci Eng, A 199:121–130. https://doi.org/10.1016/0921-5093(94)09721-6

    Article  Google Scholar 

  64. Mayer C, Li N, Mara N, Chawla N (2015) Micromechanical and in situ shear testing of Al–SiC nanolaminate composites in a transmission electron microscope (TEM). Mater Sci Eng, A 621:229–235. https://doi.org/10.1016/j.msea.2014.10.055

    Article  CAS  Google Scholar 

  65. Fujisawa S, Kizuka T (2003) Lateral displacement of an AFM tip observed by in situ TEM/AFM combined microscopy: the effect of the friction in AFM. Tribol Lett 15:163–168. https://doi.org/10.1023/A:1024413417553

    Article  Google Scholar 

  66. Merkle AP, Marks LD (2007) Friction in full view. Appl Phys Lett 90:064101. https://doi.org/10.1063/1.2456192

    Article  CAS  Google Scholar 

  67. Zhong L, Wang J, Sheng H, Zhang Z, Mao SX (2014) Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature 512:177–180. https://doi.org/10.1038/nature13617

    Article  CAS  Google Scholar 

  68. Fujisawa S, Kikkawa T, Kizuka T (2003) Direct observation of electromigration and induced stress in Cu nanowire. Jpn J Appl Phys 42:L1433–L1435. https://doi.org/10.1143/jjap.42.L1433

    Article  CAS  Google Scholar 

  69. Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5:218–224. https://doi.org/10.1038/nnano.2010.4

    Article  CAS  Google Scholar 

  70. Wang C-C, Li Q-J, Chen L et al (2015) Ultrafast shape change and joining of small-volume materials using nanoscale electrical discharge. Nano Res 8:2143–2151. https://doi.org/10.1007/s12274-014-0685-7

    Article  CAS  Google Scholar 

  71. Zhang Z, Cui J, Wang B et al (2018) In situ TEM observation of rebonding on fractured silicon carbide. Nanoscale 10:6261–6269. https://doi.org/10.1039/c8nr00341f

    Article  CAS  Google Scholar 

  72. Rubanov S, Munroe PR (2001) Investigation of the structure of damage layers in TEM samples prepared using a focused ion beam. J Mater Sci Lett 20:1181–1183. https://doi.org/10.1023/A:1010950201525

    Article  CAS  Google Scholar 

  73. Kear BH, Oblak J (1974) Deformation modes γ’precipitation hardened nickel-base alloys. Le Journal de Physique Colloques 35:C7-35-C37-45

    Article  Google Scholar 

  74. Kolbe M (2001) The high temperature decrease of the critical resolved shear stress in nickel-base superalloys. Mater Sci Eng: A 319–321:383–387. https://doi.org/10.1016/S0921-5093(01)00944-3

    Article  Google Scholar 

  75. Kovarik L, Unocic RR, Li J et al (2009) Microtwinning and other shearing mechanisms at intermediate temperatures in Ni-based superalloys. Prog Mater Sci 54:839–873. https://doi.org/10.1016/j.pmatsci.2009.03.010

    Article  CAS  Google Scholar 

  76. Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422–426. https://doi.org/10.1126/science.1092905

    Article  CAS  Google Scholar 

  77. Lu K, Lu L, Suresh S (2009) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324:349–352. https://doi.org/10.1126/science.1159610

    Article  CAS  Google Scholar 

  78. Luo X-M, Zhu X-F, Zhang G-P (2014) Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat Commun 5:3021. https://doi.org/10.1038/ncomms4021

    Article  CAS  Google Scholar 

  79. Zhu Q, Kong L, Lu H et al (2021) Revealing extreme twin-boundary shear deformability in metallic nanocrystals. Sci Adv 7:eabe4758. https://doi.org/10.1126/sciadv.abe4758

    Article  CAS  Google Scholar 

  80. Zheng H, Cao A, Weinberger CR et al (2010) Discrete plasticity in sub-10-nm-sized gold crystals. Nat Commun 1:144. https://doi.org/10.1038/ncomms1149

    Article  CAS  Google Scholar 

  81. Ishida T, Sato T, Nabeya S, Fujita H (2010) Quasi-static frictional test between silicon sharp probes within situ TEM observation of real contact point. J Phys: Conf Ser 258:012011. https://doi.org/10.1088/1742-6596/258/1/012011

    Article  Google Scholar 

  82. Sato T, Ishida T, Jalabert L, Fujita H (2011) Development of MEMS-in-TEM setup to observe shear deformation for the study of nano-scale friction. Tribology Online 6:226–229. https://doi.org/10.2474/trol.6.226

    Article  Google Scholar 

  83. Ishida T, Sato T, Fujita H (2012) In situ observation of shear deformation of gold single real contact point at the nanoscale. Tribology Online 7:127–131. https://doi.org/10.2474/trol.7.127

    Article  Google Scholar 

  84. Asay DB, Dugger MT, Kim SH (2007) In situ vapor-phase lubrication of MEMS. Tribol Lett 29:67–74. https://doi.org/10.1007/s11249-007-9283-0

    Article  CAS  Google Scholar 

  85. Gray GT, Vecchio KS, Livescu V (2016) Compact forced simple-shear sample for studying shear localization in materials. Acta Mater 103:12–22. https://doi.org/10.1016/j.actamat.2015.09.051

    Article  CAS  Google Scholar 

  86. Heyer JK, Brinckmann S, Pfetzing-Micklich J, Eggeler G (2014) Microshear deformation of gold single crystals. Acta Mater 62:225–238. https://doi.org/10.1016/j.actamat.2013.10.002

    Article  CAS  Google Scholar 

  87. Gigax JG, Baldwin JK, Sheehan CJ, Maloy SA, Li N (2019) Microscale shear specimens for evaluating the shear deformation in single-crystal and nanocrystalline Cu and at Cu–Si interfaces. J Mater Res 34:1574–1583. https://doi.org/10.1557/jmr.2019.104

    Article  CAS  Google Scholar 

  88. Zhang Z, Sheng H, Wang Z et al (2017) Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat Commun 8:14390. https://doi.org/10.1038/ncomms14390

    Article  CAS  Google Scholar 

  89. Zhou H, Huang C, Sha X et al (2019) In situobservation of dislocation dynamics near heterostructured interfaces. Mater Res Lett 7:376–382. https://doi.org/10.1080/21663831.2019.1616330

    Article  CAS  Google Scholar 

  90. Liu B-Y, Prasad KE, Yang N, Liu F, Shan Z-W (2019) In situ quantitative TEM investigation on the dynamic evolution of individual twin boundary in magnesium under cyclic loading. Acta Mater 179:414–423. https://doi.org/10.1016/j.actamat.2019.08.043

    Article  CAS  Google Scholar 

  91. Ding Q, Fu X, Chen D et al (2019) Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Mater Today 25:21–27. https://doi.org/10.1016/j.mattod.2019.03.001

    Article  CAS  Google Scholar 

  92. Wang X, Wang J, He Y, Wang C, Zhong L, Mao SX (2020) Unstable twin in body-centered cubic tungsten nanocrystals. Nat Commun 11:2497. https://doi.org/10.1038/s41467-020-16349-8

    Article  CAS  Google Scholar 

  93. He Y, Li B, Wang C, Mao SX (2020) Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals. Nat Commun 11:2483. https://doi.org/10.1038/s41467-020-16351-0

    Article  CAS  Google Scholar 

  94. Pennycook SJ, Li C, Li M et al (2018) Material structure, properties, and dynamics through scanning transmission electron microscopy. J Anal Sci Technol 9:11. https://doi.org/10.1186/s40543-018-0142-4

    Article  CAS  Google Scholar 

  95. Wei J, Feng B, Ishikawa R et al (2021) Direct imaging of atomistic grain boundary migration. Nat Mater 20:951–955. https://doi.org/10.1038/s41563-020-00879-z

    Article  CAS  Google Scholar 

  96. Lazic I, Bosch EGT, Lazar S (2016) Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160:265–280. https://doi.org/10.1016/j.ultramic.2015.10.011

    Article  CAS  Google Scholar 

  97. Ophus C, Ciston J, Pierce J et al (2016) Efficient linear phase contrast in scanning transmission electron microscopy with matched illumination and detector interferometry. Nat Commun 7:10719. https://doi.org/10.1038/ncomms10719

    Article  CAS  Google Scholar 

  98. Pekin TC, Gammer C, Ciston J, Ophus C, Minor AM (2018) In situ nanobeam electron diffraction strain mapping of planar slip in stainless steel. Scr Mater 146:87–90. https://doi.org/10.1016/j.scriptamat.2017.11.005

    Article  CAS  Google Scholar 

  99. Ophus C (2019) Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond. Microsc Microanal 25:563–582. https://doi.org/10.1017/S1431927619000497

    Article  CAS  Google Scholar 

  100. Kobler A, Kashiwar A, Hahn H, Kübel C (2013) Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy 128:68–81. https://doi.org/10.1016/j.ultramic.2012.12.019

    Article  CAS  Google Scholar 

  101. Müller-Caspary K, Duchamp M, Rösner M et al (2018) Atomic-scale quantification of charge densities in two-dimensional materials. Phys Rev B 98:121408. https://doi.org/10.1103/PhysRevB.98.121408

    Article  Google Scholar 

  102. Muller-Caspary K, Krause FF, Grieb T et al (2017) Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy. Ultramicroscopy 178:62–80. https://doi.org/10.1016/j.ultramic.2016.05.004

    Article  CAS  Google Scholar 

  103. Taheri ML, Stach EA, Arslan I et al (2016) Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170:86–95. https://doi.org/10.1016/j.ultramic.2016.08.007

    Article  CAS  Google Scholar 

  104. McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Methods Enzymol 579:1–17. https://doi.org/10.1016/bs.mie.2016.05.056

    Article  CAS  Google Scholar 

  105. Grob P, Bean D, Typke D, Li X, Nogales E, Glaeser RM (2013) Ranking TEM cameras by their response to electron shot noise. Ultramicroscopy 133:1–7. https://doi.org/10.1016/j.ultramic.2013.01.003

    Article  CAS  Google Scholar 

  106. Wu C-C, Stach EA, Hull R (2007) Nanoscale mechanisms of misfit dislocation propagation in undulated Si1−xGex/Si(100) epitaxial thin films. Nanotechnology 18:165705. https://doi.org/10.1088/0957-4484/18/16/165705

    Article  CAS  Google Scholar 

  107. Hull D, Bacon DJ (2011) Movement of dislocations. In: Hull D, Bacon DJ (eds) Introduction to dislocations, 5th edn. Butterworth-Heinemann, Oxford, p 43–62

  108. Johnston WG, Gilman JJ (1959) Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. J Appl Phys 30:129–144. https://doi.org/10.1063/1.1735121

    Article  CAS  Google Scholar 

  109. Bowden FP, Cooper RE (1962) Velocity of twin propagation in crystals. Nature 195:1091–1092. https://doi.org/10.1038/1951091a0

    Article  CAS  Google Scholar 

  110. Lobastov VA, Srinivasan R, Zewail AH (2005) Four-dimensional ultrafast electron microscopy. Proc Natl Acad Sci USA 102:7069–7073. https://doi.org/10.1073/pnas.0502607102

    Article  CAS  Google Scholar 

  111. Perry SS, Tysoe WT (2005) Frontiers of fundamental tribological research. Tribol Lett 19:151–161. https://doi.org/10.1007/s11249-005-6142-8

    Article  Google Scholar 

  112. Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430:525–528. https://doi.org/10.1038/nature02750

    Article  CAS  Google Scholar 

  113. Urbakh M, Meyer E (2010) The renaissance of friction. Nat Mater 9:8–10. https://doi.org/10.1038/nmat2599

    Article  CAS  Google Scholar 

  114. Sundaram NK, Guo Y, Chandrasekar S (2012) Mesoscale folding, instability, and disruption of laminar flow in metal surfaces. Phys Rev Lett 109:106001. https://doi.org/10.1103/PhysRevLett.109.106001

    Article  CAS  Google Scholar 

  115. Mahato A, Guo Y, Sundaram NK, Chandrasekar S (2014) Surface folding in metals: a mechanism for delamination wear in sliding. Proc Math Phys Eng Sci 470:20140297. https://doi.org/10.1098/rspa.2014.0297

    Article  Google Scholar 

  116. Beckmann N, Romero PA, Linsler D et al (2014) Origins of folding instabilities on polycrystalline metal surfaces. Phys Rev Appl 2:064004. https://doi.org/10.1103/PhysRevApplied.2.064004

    Article  CAS  Google Scholar 

  117. Chen X, Han Z, Li X, Lu K (2016) Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci Adv 2:e1601942. https://doi.org/10.1126/sciadv.1601942

    Article  CAS  Google Scholar 

  118. Jacobs TDB, Gotsmann B, Lantz MA, Carpick RW (2010) On the application of transition state theory to atomic-scale wear. Tribol Lett 39:257–271. https://doi.org/10.1007/s11249-010-9635-z

    Article  Google Scholar 

  119. Bhaskaran H, Gotsmann B, Sebastian A et al (2010) Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat Nanotechnol 5:181–185. https://doi.org/10.1038/nnano.2010.3

    Article  CAS  Google Scholar 

  120. Gotsmann B, Lantz MA (2008) Atomistic wear in a single asperity sliding contact. Phys Rev Lett 101:125501. https://doi.org/10.1103/PhysRevLett.101.125501

    Article  CAS  Google Scholar 

  121. Kopta S, Salmeron M (2000) The atomic scale origin of wear on mica and its contribution to friction. J Chem Phys 113:8249–8252. https://doi.org/10.1063/1.1314376

    Article  CAS  Google Scholar 

  122. Bennewitz R, Dickinson JT (2008) Fundamental studies of nanometer-scale wear mechanisms. MRS Bull 33:1174–1180. https://doi.org/10.1557/mrs2008.248

    Article  Google Scholar 

  123. Liu J, Notbohm JK, Carpick RW, Turner KT (2010) Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4:3763–3772. https://doi.org/10.1021/nn100246g

    Article  CAS  Google Scholar 

  124. Jacobs TD, Carpick RW (2013) Nanoscale wear as a stress-assisted chemical reaction. Nat Nanotechnol 8:108–112. https://doi.org/10.1038/nnano.2012.255

    Article  CAS  Google Scholar 

  125. Carpick RW, Jacobs TDB (2014) Nanoscale wear as a stress-assisted chemical reaction: an in situ TEM study. Microsc Microanal 20:1542–1543. https://doi.org/10.1017/s1431927614009441

    Article  Google Scholar 

  126. Merkle AP, Marks LD (2008) Liquid-like tribology of gold studied by in situ TEM. Wear 265:1864–1869. https://doi.org/10.1016/j.wear.2008.04.032

    Article  CAS  Google Scholar 

  127. Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JW, Heimberg JA, Zandbergen HW (2004) Superlubricity of graphite. Phys Rev Lett 92:126101. https://doi.org/10.1103/PhysRevLett.92.126101

    Article  CAS  Google Scholar 

  128. Dienwiebel M, Pradeep N, Verhoeven GS, Zandbergen HW, Frenken JWM (2005) Model experiments of superlubricity of graphite. Surf Sci 576:197–211. https://doi.org/10.1016/j.susc.2004.12.011

    Article  CAS  Google Scholar 

  129. Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett 59:1942–1945. https://doi.org/10.1103/PhysRevLett.59.1942

    Article  CAS  Google Scholar 

  130. Hu J, Xd Xiao DF, Ogletree MS (1995) Atomic scale friction and wear of mica. Surf Sci 327:358–370. https://doi.org/10.1016/0039-6028(94)00846-9

    Article  CAS  Google Scholar 

  131. Bennewitz R, Gyalog T, Guggisberg M, Bammerlin M, Meyer E, Güntherodt HJ (1999) Atomic-scale stick-slip processes on Cu(111). Phys Rev B 60:R11301–R11304. https://doi.org/10.1103/PhysRevB.60.R11301

    Article  CAS  Google Scholar 

  132. Gosvami NN, Filleter T, Egberts P, Bennewitz R (2009) Microscopic friction studies on metal surfaces. Tribol Lett 39:19–24. https://doi.org/10.1007/s11249-009-9508-5

    Article  CAS  Google Scholar 

  133. Howald L, Haefke H, Lüthi R et al (1994) Ultrahigh-vacuum scanning force microscopy: atomic-scale resolution at monatomic cleavage steps. Phys Rev B 49:5651–5656. https://doi.org/10.1103/PhysRevB.49.5651

    Article  CAS  Google Scholar 

  134. Germann GJ, Cohen SR, Neubauer G, McClelland GM, Seki H, Coulman D (1993) Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces. J Appl Phys 73:163–167. https://doi.org/10.1063/1.353878

    Article  CAS  Google Scholar 

  135. Rodrigues V, Fuhrer T, Ugarte D (2000) Signature of atomic structure in the quantum conductance of gold nanowires. Phys Rev Lett 85:4124–4127. https://doi.org/10.1103/PhysRevLett.85.4124

    Article  CAS  Google Scholar 

  136. Rodrigues V, Ugarte D (2001) Real-time imaging of atomistic process in one-atom-thick metal junctions. Phys Rev B 63:073405. https://doi.org/10.1103/PhysRevB.63.073405

    Article  CAS  Google Scholar 

  137. Sun J, He L, Lo YC et al (2014) Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles. Nat Mater 13:1007–1012. https://doi.org/10.1038/nmat4105

    Article  CAS  Google Scholar 

  138. Lockwood AJ, Anantheshwara K, Bobji MS, Inkson BJ (2011) Friction-formed liquid droplets. Nanotechnology 22:105703. https://doi.org/10.1088/0957-4484/22/10/105703

    Article  CAS  Google Scholar 

  139. Matsuda T, Kizuka T (2009) Slip sequences during tensile deformation of palladium nanocontacts. Jpn J Appl Phys 48:115003. https://doi.org/10.1143/jjap.48.115003

    Article  Google Scholar 

  140. Yamada K, Kizuka T (2017) Transformation from slip to plastic flow deformation mechanism during tensile deformation of zirconium nanocontacts. Sci Rep 7:42901. https://doi.org/10.1038/srep42901

    Article  CAS  Google Scholar 

  141. Miyazaki S, Wayman CM (1988) The R-phase transition and associated shape memory mechanism in Ti-Ni single crystals. Acta Metall 36:181–192. https://doi.org/10.1016/0001-6160(88)90037-5

    Article  CAS  Google Scholar 

  142. Kizuka T (1998) Atomistic visualization of deformation in gold. Phys Rev B 57:11158–11163. https://doi.org/10.1103/PhysRevB.57.11158

    Article  CAS  Google Scholar 

  143. Dou R, Derby B (2011) Deformation mechanisms in gold nanowires and nanoporous gold. Philos Mag 91:1070–1083. https://doi.org/10.1080/14786435.2010.481271

    Article  CAS  Google Scholar 

  144. Lee S-W, Han SM, Nix WD (2009) Uniaxial compression of fcc Au nanopillars on an MgO substrate: the effects of prestraining and annealing. Acta Mater 57:4404–4415. https://doi.org/10.1016/j.actamat.2009.06.002

    Article  CAS  Google Scholar 

  145. M’Ndange-Pfupfu A, Eryilmaz O, Erdemir A, Marks LD (2011) Quantification of sliding-induced phase transformation in N3FC diamond-like carbon films. Diamond Relat Mater 20:1143–1148. https://doi.org/10.1016/j.diamond.2011.06.028

    Article  CAS  Google Scholar 

  146. Deb SK, Wilding M, Somayazulu M, McMillan PF (2001) Pressure-induced amorphization and an amorphous–amorphous transition in densified porous silicon. Nature 414:528–530. https://doi.org/10.1038/35107036

    Article  CAS  Google Scholar 

  147. Kailer A, Gogotsi YG, Nickel KG (1997) Phase transformations of silicon caused by contact loading. J Appl Phys 81:3057–3063. https://doi.org/10.1063/1.364340

    Article  CAS  Google Scholar 

  148. Ruffell S, Bradby JE, Williams JS, Munroe P (2007) Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon. J Appl Phys 102:063521. https://doi.org/10.1063/1.2781394

    Article  CAS  Google Scholar 

  149. Minowa K, Sumino K (1992) Stress-induced amorphization of silicon crystal by mechanical scratching. Phys Rev Lett 69:320–322. https://doi.org/10.1103/PhysRevLett.69.320

    Article  CAS  Google Scholar 

  150. Perez-Prado MT, Zhilyaev AP (2009) First experimental observation of shear induced hcp to bcc transformation in pure Zr. Phys Rev Lett 102:175504. https://doi.org/10.1103/PhysRevLett.102.175504

    Article  CAS  Google Scholar 

  151. Lai MJ, Tasan CC, Zhang J, Grabowski B, Huang LF, Raabe D (2015) Origin of shear induced β to ω transition in Ti–Nb-based alloys. Acta Mater 92:55–63. https://doi.org/10.1016/j.actamat.2015.03.040

    Article  CAS  Google Scholar 

  152. Straumal BB, Mazilkin AA, Baretzky B et al (2012) Accelerated diffusion and phase transformations in Co–Cu alloys driven by the severe plastic deformation. Mater Trans 53:63–71. https://doi.org/10.2320/matertrans.MD201111

    Article  CAS  Google Scholar 

  153. Wu HC, Kumar A, Wang J et al (2016) Rolling-induced Face centered cubic titanium in hexagonal close packed titanium at room temperature. Sci Rep 6:24370. https://doi.org/10.1038/srep24370

    Article  CAS  Google Scholar 

  154. Rajabzadeh A, Mompiou F, Legros M, Combe N (2013) Elementary mechanisms of shear-coupled grain boundary migration. Phys Rev Lett 110:265507. https://doi.org/10.1103/PhysRevLett.110.265507

    Article  CAS  Google Scholar 

  155. Gorkaya T, Burlet T, Molodov DA, Gottstein G (2010) Experimental method for true in situ measurements of shear-coupled grain boundary migration. Scr Mater 63:633–636. https://doi.org/10.1016/j.scriptamat.2010.05.040

    Article  CAS  Google Scholar 

  156. Mompiou F, Caillard D, Legros M (2009) Grain boundary shear–migration coupling—I. In situ TEM straining experiments in Al polycrystals. Acta Mater 57:2198–2209. https://doi.org/10.1016/j.actamat.2009.01.014

    Article  CAS  Google Scholar 

  157. Zhang L, Lu C, Tieu K, Zhao X, Pei L (2015) The shear response of copper bicrystals with Sigma11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation. Nanoscale 7:7224–7233. https://doi.org/10.1039/c4nr07496c

    Article  CAS  Google Scholar 

  158. Legros M, Gianola DS, Hemker KJ (2008) In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater 56:3380–3393. https://doi.org/10.1016/j.actamat.2008.03.032

    Article  CAS  Google Scholar 

  159. Rajabzadeh A, Mompiou F, Lartigue-Korinek S, Combe N, Legros M, Molodov DA (2014) The role of disconnections in deformation-coupled grain boundary migration. Acta Mater 77:223–235. https://doi.org/10.1016/j.actamat.2014.05.062

    Article  CAS  Google Scholar 

  160. Merkle KL, Thompson LJ, Phillipp F (2002) Collective effects in grain boundary migration. Phys Rev Lett 88:225501. https://doi.org/10.1103/PhysRevLett.88.225501

    Article  CAS  Google Scholar 

  161. Merkle KL, Thompson LJ, Phillipp F (2010) high-resolution electron microscopy at a (113) symmetric Thermally activated step motion observed by tilt grain-boundary in aluminium. Philos Mag Lett 82:589–597. https://doi.org/10.1080/0950083021000038074

    Article  CAS  Google Scholar 

  162. Rae CMF, Smith DA (2006) On the mechanisms of grain boundary migration. Philos Mag A 41:477–492. https://doi.org/10.1080/01418618008239327

    Article  Google Scholar 

  163. Fukutomi H, Kamijo T (1985) Grain boundary sliding-migration of aluminum <110> Σ11 113 symmetric tilt coincidence grain boundary and its interpretation based on the motion of perfect DSC dislocations. Scr Metall 19:195–197. https://doi.org/10.1016/0036-9748(85)90181-4

    Article  CAS  Google Scholar 

  164. Rajabzadeh A, Legros M, Combe N, Mompiou F, Molodov DA (2013) Evidence of grain boundary dislocation step motion associated to shear-coupled grain boundary migration. Philos Mag 93:1299–1316. https://doi.org/10.1080/14786435.2012.760760

    Article  CAS  Google Scholar 

  165. Cahn JW, Taylor JE (2004) A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater 52:4887–4898. https://doi.org/10.1016/j.actamat.2004.02.048

    Article  CAS  Google Scholar 

  166. Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975. https://doi.org/10.1016/j.actamat.2006.08.004

    Article  CAS  Google Scholar 

  167. Babcock SE, Balluffi RW (1989) Grain boundary kinetics—II. In situ observations of the role of grain boundary dislocations in high-angle boundary migration. Acta Metall 37:2367–2376. https://doi.org/10.1016/0001-6160(89)90034-5

    Article  CAS  Google Scholar 

  168. Jhan R-J, Bristowe PD (1990) A molecular dynamics study of grain boundary migration without the participation of secondary grain boundary dislocations. Scr Metall Mater 24:1313–1318. https://doi.org/10.1016/0956-716X(90)90348-K

    Article  CAS  Google Scholar 

  169. Mompiou F, Legros M, Caillard D (2010) SMIG model: A new geometrical model to quantify grain boundary-based plasticity. Acta Mater 58:3676–3689. https://doi.org/10.1016/j.actamat.2010.03.003

    Article  CAS  Google Scholar 

  170. Merkle KL, Thompson LJ (2001) Atomic-scale observation of grain boundary motion. Mater Lett 48:188–193. https://doi.org/10.1016/S0167-577X(00)00301-3

    Article  CAS  Google Scholar 

  171. Hintsala ED, Stauffer DD, Oh Y, Asif SAS (2016) In situ TEM scratch testing of perpendicular magnetic recording multilayers with a novel MEMS tribometer. JOM 69:51–56. https://doi.org/10.1007/s11837-016-2154-0

    Article  CAS  Google Scholar 

  172. Liao Y, EswaraMoorthy SK, Marks LD (2010) Direct observation of tribological recrystallization. Philos Mag Lett 90:219–223. https://doi.org/10.1080/09500830903571384

    Article  CAS  Google Scholar 

  173. Sato T, Jalabert L, Fujita H (2013) Development of MEMS integrated into TEM setup to monitor shear deformation, force and stress for nanotribology. Microelectron Eng 112:269–272. https://doi.org/10.1016/j.mee.2013.03.156

    Article  CAS  Google Scholar 

  174. Qu J, Zhang W, Jung A, Silva-Da Cruz S, Liu X (2017) Microscale compression and shear testing of soft materials using an MEMS microgripper with two-axis actuators and force sensors. IEEE Trans Autom Sci Eng 14:834–843. https://doi.org/10.1109/tase.2016.2613684

    Article  Google Scholar 

  175. Bufford DC, Stauffer D, Mook WM, Syed Asif SA, Boyce BL, Hattar K (2016) High cycle fatigue in the transmission electron microscope. Nano Lett 16:4946–4953. https://doi.org/10.1021/acs.nanolett.6b01560

    Article  CAS  Google Scholar 

  176. Liao H-G, Zherebetskyy D, Xin H et al (2014) Facet development during platinum nanocube growth. Science 345:916–919. https://doi.org/10.1126/science.1253149

    Article  CAS  Google Scholar 

  177. Cai W, Bellon P (2013) Subsurface microstructure evolution and deformation mechanism of Ag–Cu eutectic alloy after dry sliding wear. Wear 303:602–610. https://doi.org/10.1016/j.wear.2013.04.006

    Article  CAS  Google Scholar 

  178. Ren F, Arshad SN, Bellon P, Averback RS, Pouryazdan M, Hahn H (2014) Sliding wear-induced chemical nanolayering in Cu–Ag, and its implications for high wear resistance. Acta Mater 72:148–158. https://doi.org/10.1016/j.actamat.2014.03.060

    Article  CAS  Google Scholar 

  179. Izadi S, Mraied H, Cai W (2015) Tribological and mechanical behavior of nanostructured Al/Ti multilayers. Surf Coat Technol 275:374–383. https://doi.org/10.1016/j.surfcoat.2015.04.039

    Article  CAS  Google Scholar 

  180. Grosso RL, Muccillo ENS, Muche DNF et al (2020) In situ transmission electron microscopy for ultrahigh temperature mechanical testing of ZrO2. Nano Lett 20:1041–1046. https://doi.org/10.1021/acs.nanolett.9b04205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL) as part of the Solid Phase Processing Science initiative. A portion of this research was performed using facilities at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy’s (DOE’s) Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for DOE under Contract DEAC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongmin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Powell, C.A., Mathaudhu, S. et al. Review of recent progress on in situ TEM shear deformation: a retrospective and perspective view. J Mater Sci 57, 12177–12201 (2022). https://doi.org/10.1007/s10853-022-07331-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07331-4

Navigation