Skip to main content
Log in

A crystallographic study of the deformation mechanisms during small punch testing of 14wt%Cr oxide dispersion steel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With their excellent resistance to high-temperature creep and irradiation swelling, the oxide dispersion strengthened (ODS) ferritic steels are considered promising structural materials for future reactors. The characteristic anisotropy of these materials, imposed by their fabrication processes, is considered both beneficial and harmful, depending on the specific application. Current research has addressed the effect of anisotropy on mechanical properties by analyzing deformation mechanisms operating during the small punch testing (SPT). As a case study, 14wt%Cr ODS steel rod was studied before and post SPT along and perpendicular to the extrusion direction. In order to assess the effect of the anisotropy, this study incorporates extensive microstructural characterization alongside quantitative textural analysis. Nucleation of cracks and their subsequent propagation are discussed, taking grain boundary characteristics, grain morphology, texture, and the effect of dispersed particles into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kohyama A, Seki M, Abe K, Muroga T, Matsui H, Jitsukawa S, Matsuda S (2000) Interactions between fusion materials R&D and other technologies. J Nucl Mater 283–287:20–27. https://doi.org/10.1016/S0022-3115(00)00156-2

    Article  Google Scholar 

  2. Odette GR, Alinger MJ, Wirth BD (2008) Recent developments in irradiation-resistant steels. Annu Rev Mater Res 38:471–503. https://doi.org/10.1146/annurev.matsci.38.060407.130315

    Article  CAS  Google Scholar 

  3. Capdevila C, Bhadeshia HKDH (2001) Manufacturing and microstructural evolution of mechanuically alloyed oxide dispersion strengthened superalloys. Adv Eng Mater 3:647–656. https://doi.org/10.1002/1527-2648(200109)3:9%3c647::AID-ADEM647%3e3.0.CO;2-4

    Article  CAS  Google Scholar 

  4. Kimura A, Kayano H, Misawa T, Matsui H (1994) Designation of alloy composition of reduced-activation martensitic steel. J Nucl Mater 212–215:690–694. https://doi.org/10.1016/0022-3115(94)90146-5

    Article  Google Scholar 

  5. Yvon P, Carré F (2009) Structural materials challenges for advanced reactor systems. J Nucl Mater 385:217–222. https://doi.org/10.1016/j.jnucmat.2008.11.026

    Article  CAS  Google Scholar 

  6. Fleetwood MJ (1986) Mechanical alloying – the development of strong alloys. Mater Sci Technol 2:1176–1182. https://doi.org/10.1179/mst.1986.2.12.1176

    Article  CAS  Google Scholar 

  7. Okada H, Ukai S, Inoue M (1996) Effects of grain morphology and texture on high temperature deformation in oxide dispersion strengthened ferritic steels. J Nucl Sci Technol 33:936–943. https://doi.org/10.1080/18811248.1996.9732035

    Article  CAS  Google Scholar 

  8. Rouffié AL, Crépin J, Sennour M, Tanguy B, Pineau A, Hamon D, Wident P, Vincent S, Garat V, Fournier B (2014) Effect of the thermal ageing on the tensile and impact properties of a 18%Cr ODS ferritic steel. J Nucl Mater 445:37–42. https://doi.org/10.1016/j.jnucmat.2013.10.030

    Article  CAS  Google Scholar 

  9. de Carlan Y, Bechade J-L, Dubuisson P, Seran J-L, Billot P, Bougault A, Cozzika T, Doriot S, Hamon D, Henry J, Ratti M, Lochet N, Nunes D, Olier P, Leblond T, Mathon MH (2009) CEA developments of new ferritic ODS alloys for nuclear applications. J Nucl Mater 386–388:430–432. https://doi.org/10.1016/j.jnucmat.2008.12.156

    Article  CAS  Google Scholar 

  10. Kasada R, Lee SG, Isselin J, Lee JH, Omura T, Kimura A, Okuda T, Inoue M, Ukai S, Ohnuki S, Fujisawa T, Abe F (2011) Anisotropy in tensile and ductile–brittle transition behavior of ODS ferritic steels. J Nucl Mater 417:180–184. https://doi.org/10.1016/j.jnucmat.2010.12.069

    Article  CAS  Google Scholar 

  11. Hoelzer DT, Unocic KA, Sokolov MA, Byun TS (2016) Influence of processing on the microstructure and mechanical properties of 14YWT. J Nucl Mater 471:251–265. https://doi.org/10.1016/j.jnucmat.2015.12.011

    Article  CAS  Google Scholar 

  12. Gao R, Zhang T, Ding HL, Jiang Y, Wang XP, Fang QF, Liu CS (2015) Annealing effects on the microstructure and mechanical properties of hot-rolled 14Cr-ODS steel. J Nucl Mater 465:268–279. https://doi.org/10.1016/j.jnucmat.2015.05.038

    Article  CAS  Google Scholar 

  13. Sahu JK, Krupp U, Ghosh RN, Christ H-J (2009) Effect of 475 °C embrittlement on the mechanical properties of duplex stainless steel. Mater Sci Eng A 508:1–14. https://doi.org/10.1016/j.msea.2009.01.039

    Article  CAS  Google Scholar 

  14. Grobner PJ (1972) The 885oF (475 °C) embrittlement of ferritic stainless steels. Metall Trans 4:251–260

    Article  Google Scholar 

  15. Kobayashi S, Takasugi T (2010) Mapping of 475 °C embrittlement in ferritic Fe–Cr–Al alloys. Scripta Mater 63:1104–1107. https://doi.org/10.1016/j.scriptamat.2010.08.015

    Article  CAS  Google Scholar 

  16. García TE, Rodríguez C, Belzunce FJ, Suárez C (2014) Estimation of the mechanical properties of metallic materials by means of the small punch test. J Alloy Compd 582:708–717. https://doi.org/10.1016/j.jallcom.2013.08.009

    Article  CAS  Google Scholar 

  17. Byun TS, Lee EH, Hunn JD, Farrell K, Mansur LK (2001) Characterization of plastic deformation in a disk bend test. J Nucl Mater 294:256–266. https://doi.org/10.1016/S0022-3115(01)00484-6

    Article  CAS  Google Scholar 

  18. Lucas GE (1990) Review of small specimen test techniques for irradiation testing. MTA 21:1105–1119. https://doi.org/10.1007/BF02656531

    Article  Google Scholar 

  19. Fleury E, Ha JS (1998) Small punch tests on steels for steam power plant (II). KSME Int J 12:827. https://doi.org/10.1007/BF02945550

    Article  Google Scholar 

  20. Turba K, Hurst RC, Hähner P (2012) Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique. J Nucl Mater 428:76–81. https://doi.org/10.1016/j.jnucmat.2011.08.042

    Article  CAS  Google Scholar 

  21. Templeman Y, Rogozhkin S, Khomich A, Nikitin A, Pinkas M, Meshi L (2020) Characterization of nano-sized particles in 14%Cr oxide dispersion strengthened (ODS) steel using classical and frontier microscopy methods. Mater Charact 160:110075. https://doi.org/10.1016/j.matchar.2019.110075

    Article  CAS  Google Scholar 

  22. Haroush S, Priel E, Moreno D, Busiba A, Silverman I, Turgeman A, Shneck R, Gelbstein Y (2015) Evaluation of the mechanical properties of SS-316L thin foils by small punch testing and finite element analysis. Mater Des 83:75–84. https://doi.org/10.1016/j.matdes.2015.05.049

    Article  CAS  Google Scholar 

  23. Haroush S, Moreno D, Silverman I, Turgeman A, Shneck R, Gelbstein Y (2017) The mechanical behavior of HAVAR foils using the small punch technique. Materials 10:491. https://doi.org/10.3390/ma10050491

    Article  CAS  Google Scholar 

  24. Cwa C (2006) cwa200615627 - 15627 worskshop agreement: small punch test method for metallic materials. European Committee for Standardization, Brussels

    Google Scholar 

  25. Beausir B, Fundenberger J-J (2017) Analysis tools for electron and X-ray diffraction, ATEX - software. http://www.atex-software.eu/help.html (Accessed 17 July 2021)

  26. Brandon DG (1966) The structure of high-angle grain boundaries. Acta Metall 14:1479–1484. https://doi.org/10.1016/0001-6160(66)90168-4

    Article  CAS  Google Scholar 

  27. Samuha S, Kahana E, Sadot O, Shneck R (2018) Improved formability of Mg-AZ80 alloy under a high strain rate in expanding-ring experiments. Materials 11:329. https://doi.org/10.3390/ma11020329

    Article  CAS  Google Scholar 

  28. Humphreys FJ (2004) Reconstruction of grains and subgrains from electron backscatter diffraction maps: reconstruction of grains and subgrains from EBSD maps. J Microsc 213:247–256. https://doi.org/10.1111/j.0022-2720.2004.01297.x

    Article  CAS  Google Scholar 

  29. Hähner P, Soyarslan C, Gülçimen Çakan B, Bargmann S (2019) Determining tensile yield stresses from small punch tests: a numerical-based scheme. Mater Des 182:107974. https://doi.org/10.1016/j.matdes.2019.107974

    Article  Google Scholar 

  30. Yen CM, Stickels CA (1970) Lamellate fracture in 5150 steel processed by modified ausforming. Metall Mater Trans B 1:3037–3047. https://doi.org/10.1007/BF03038417

    Article  CAS  Google Scholar 

  31. Zhou W, Loh NL (1996) Effect of delaminations on improvement of notch toughness at low temperatures. Scripta Mater 34:633–639. https://doi.org/10.1016/1359-6462(95)00564-1

    Article  CAS  Google Scholar 

  32. Yerra SK, Tekog-Lu C, Scheyvaerts F, Delannay L, Van Houtte P, Pardoen T (2010) Void growth and coalescence in single crystals. Int J Solids Struct 47:1016–1029. https://doi.org/10.1016/j.ijsolstr.2009.12.019

    Article  Google Scholar 

  33. Ray RK, Jonas JJ (1990) Transformation textures in steels. Int Mater Rev 35:1–36. https://doi.org/10.1179/095066090790324046

    Article  Google Scholar 

  34. Bourell DL, Sherby OD (1983) Texture induced cleavage delamination of warm-rolled low carbon steel. Metall Mater Trans A 14:2563–2566. https://doi.org/10.1007/BF02668900

    Article  Google Scholar 

  35. Inoue T, Kimura Y, Ochiai S (2011) Static fracture toughness of fail-safe steel. Scripta Mater 65:552–555. https://doi.org/10.1016/j.scriptamat.2011.06.025

    Article  CAS  Google Scholar 

  36. García-Junceda A, Hernández-Mayoral M, Serrano M (2012) Influence of the microstructure on the tensile and impact properties of a 14Cr ODS steel bar. Mater Sci Eng A 556:696–703. https://doi.org/10.1016/j.msea.2012.07.051

    Article  CAS  Google Scholar 

  37. Okaguchi S, Makino H, Hamada M, Yamamoto A, Ikeda T, Takeuchi I, Fairchild DP, Macia ML, Papka SD, Stevens JH, Petersen CW, Koo JY, Bangaru NV, Luton MJ (2003) Development and mechanical properties of X120 linepipe. In: Proceedings of The Thirteenth (2003) International Offshore and Polar Engineering Conference Honolulu, Hawaii, USA, May 25–30

  38. Koo JY, Luton MJ, Bangaru NV, Petkovic RA, Fairchild DP, Petersen CW, Asahi H, Hara T, Terada Y, Sugiyama M, Tamehiro H, Komizo Y, Okaguchi S, Hamada M, Yamamoto A, Takeuchi I (2004) Metallurgical design of ultra high-strength steels for gas pipelines. Int J Offshore Polar Eng 14:1

    Google Scholar 

  39. Hutchinson B (1999) Deformation microstructures and textures in steels, philosophical transactions of the royal society of London. Ser A Math Phys Eng Sci 357:1471–1485. https://doi.org/10.1098/rsta.1999.0385

    Article  CAS  Google Scholar 

  40. Haskel HL, Pauletti E, de Martins JP, de Carvalho ALM (2014) Microstructure and microtexture assessment of delamination phenomena in charpy impact tested specimens. Mat Res 17:1238–1250. https://doi.org/10.1590/1516-1439.268314

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Dennis Sornin and the CEA/DEN/DANS for providing the ODS alloy. LM and MP thank the IAEC funding of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Samuha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: N. Ravishankar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samuha, S., Templeman, Y., Haroush, S. et al. A crystallographic study of the deformation mechanisms during small punch testing of 14wt%Cr oxide dispersion steel. J Mater Sci 57, 11969–11982 (2022). https://doi.org/10.1007/s10853-022-07337-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07337-y

Navigation