Skip to main content
Log in

A ferromagnetic hybrid Weyl semimetal in two dimensions: the monolayer AgCrS2

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Topological quantum phases in two-dimensional materials have been a fascinating research topic since the discovery of graphene. Particularly, the topological quantum phases could appear in two-dimensional magnetic systems. However, identifying concrete materials that host topological quantum phases is still a challenge, especially the magnetic ones. In this work, we propose a novel hybrid Weyl semimetal in two dimensions, the monolayer AgCrS2. We show that this material has a stable ferromagnetic ground state with an in-plane magnetic moment. Particularly, it hosts a hybrid of two Weyl nodes close to the Fermi level: one is a double Weyl point, and the other one is type-II linear Weyl point. The features of their band structure could be inferred from the effective models for them. When the spin-orbital coupling is included, the double Weyl point is gapped. In comparison, the type-II linear Weyl nodes on high-symmetry path can be tuned by controlling the orientation of the magnetization direction. To be specific, the magnetization could change locations of type-II linear Weyl nodes and control its stability. Therefore, our results offer a platform to study novel hybrid of Weyl nodes in two-dimensional ferromagnetic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ezawa M (2012) Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys Rev Lett 109:055502. https://doi.org/10.1103/PhysRevLett.109.055502

    Article  CAS  Google Scholar 

  2. Ezawa M (2013) Spin valleytronics in silicene: quantum spin Hall–quantum anomalous Hall insulators and single-valley semimetals. Phys Rev B 87:155415. https://doi.org/10.1103/PhysRevB.87.155415

    Article  CAS  Google Scholar 

  3. Zhang L, Bampoulis P, Rudenko AN, Yao Q, van Houselt A, Poelsema B, Katsnelson MI, Zandvliet HJW (2016) Structural and electronic properties of germanene on MoS2. Phys Rev Lett 116:256804. https://doi.org/10.1103/PhysRevLett.116.256804

    Article  CAS  Google Scholar 

  4. Amlaki T, Bokdam M, Kelly PJ (2016) Z2 invariance of Germanene on MoS2 from first principles. Phys Rev Lett 116:256805. https://doi.org/10.1103/PhysRevLett.116.256805

    Article  CAS  Google Scholar 

  5. Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Xu Y, Zhang SC, Duan W, Rubio A (2014) Stable two-dimensional dumbbell stanene: a quantum spin Hall insulator. Phys Rev B 90:121408. https://doi.org/10.1103/PhysRevB.90.121408

    Article  CAS  Google Scholar 

  6. De Martino A, Dell’Anna L, Egger R (2007) Magnetic confinement of massless Dirac fermions in graphene. Phys Rev Lett 98:066802. https://doi.org/10.1103/PhysRevLett.98.066802

    Article  CAS  Google Scholar 

  7. Park CH, Yang L, Son YW, Cohen ML, Louie SG (2008) New generation of massless Dirac fermions in graphene under external periodic potentials. Phys Rev Lett 101:126804. https://doi.org/10.1103/PhysRevLett.101.126804

    Article  CAS  Google Scholar 

  8. Zhou XF, Dong X, Oganov AR, Zhu Q, Tian Y, Wang HT (2014) Semi-metallic two-dimensional boron allotrope with massless Dirac fermions. Phys Rev Lett 112:085502. https://doi.org/10.1103/PhysRevLett.112.085502

    Article  CAS  Google Scholar 

  9. Nomura K, MacDonald AH (2007) Quantum transport of massless Dirac fermions. Phys Rev Lett 98:076602. https://doi.org/10.1103/PhysRevLett.98.076602

    Article  CAS  Google Scholar 

  10. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109. https://doi.org/10.1103/RevModPhys.81.109

    Article  CAS  Google Scholar 

  11. Novoselov KS, Geim AK, Morozov SV, Zhang DJ, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  12. Zhou SY, Gweon GH, Graf J, Fedorov AV, Spataru CD, Diehl RD, Kopelevich Y, Leel DH, Steven G, Lanzara A (2006) First direct observation of Dirac fermions in graphite. Nature Phys 2:595–599. https://doi.org/10.1038/nphys393

    Article  CAS  Google Scholar 

  13. Young SM, Kane CL (2015) Dirac semimetals in two dimensions. Phys Rev Lett 115:126803. https://doi.org/10.1103/PhysRevLett.115.126803

    Article  CAS  Google Scholar 

  14. Fashandi H, Ivády V, Eklund P, Spetz AL, Katsnelson MI, Abrikosov IA (2015) Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides. Phys Rev B 92:155142. https://doi.org/10.1103/PhysRevB.92.155142

    Article  CAS  Google Scholar 

  15. Wu H, Qian Y, Du Z, Zhu R, Kan E, Deng K (2017) Prediction of another semi-metallic silicene allotrope with Dirac fermions. Phys Lett A 381:3754–3759. https://doi.org/10.1016/j.physleta.2017.09.049

    Article  CAS  Google Scholar 

  16. Meng W, Zhang X, Yu W, Liu Y, Tian L, Dai X, Liu G (2021) Multiple Weyl fermions and tunable quantum anomalous Hall effect in 2D half-metal with huge spin-related energy gap. Appl Surf Sci 551:149390. https://doi.org/10.1016/j.apsusc.2021.149390

    Article  CAS  Google Scholar 

  17. Zhu L, Wang SS, Guan S, Liu Y, Zhang T, Chen G, Yang SA (2016) Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2D emergent fermions. Nano Lett 16:6548–6554. https://doi.org/10.1021/acs.nanolett.6b03208

    Article  CAS  Google Scholar 

  18. Guan S, Liu Y, Yu ZM, Wang SS, Yao Y, Yang SA (2017) Two-dimensional spin-orbit Dirac point in monolayer HfGeTe. Phys Rev Mater 1:054003. https://doi.org/10.1103/PhysRevMaterials.1.054003

    Article  Google Scholar 

  19. Jin YJ, Wang R, Zhao JZ, Du YP, Zheng CD, Gan LY, Liu JF, Xu H, Tong S (2017) The prediction of a family group of two-dimensional node-line semimetals. Nanoscale 9:13112–13118. https://doi.org/10.1039/C7NR03520A

    Article  CAS  Google Scholar 

  20. Li S, Liu Y, Wang SS, Yu ZM, Guan S, Sheng XL, Yao Y, Yang SA (2018) Nonsymmorphic-symmetry-protected hourglass Dirac loop, nodal line, and Dirac point in bulk and monolayer X3SiTe6 (X= Ta, Nb). Phys Rev B 97:045131. https://doi.org/10.1103/PhysRevB.97.045131

    Article  CAS  Google Scholar 

  21. Feng B, Fu B, Kasamatsu S, Ito S, Cheng P, Liu CC, Feng Y, Wu S, Mahatha SK, Sheverdyaeva P, Moras P, Arita M, Sugino O, Chiang TC, Shimada K, Miyamoto K, Okuda T, Wu K, Chen L, Yao Y, Matsuda I (2017) Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat Comm 8:1007. https://doi.org/10.1038/s41467-017-01108-z

    Article  CAS  Google Scholar 

  22. Yang LM, Bacic V, Popov IA, Boldyrev AI, Heine T, Frauenheim T, Ganz E (2015) Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J Am Chem Soc 137:2757–2762. https://doi.org/10.1021/ja513209c

    Article  CAS  Google Scholar 

  23. Zhang X, Jin L, Dai X, Liu G (2017) Topological type-II nodal line semimetal and Dirac semimetal state in stable kagome compound Mg3Bi2. J Phys Chem Lett 8:4814–4819. https://doi.org/10.1021/acs.jpclett.7b02129

    Article  CAS  Google Scholar 

  24. Sharma G, Goswami P, Tewari S (2017) Chiral anomaly and longitudinal magnetotransport in type-II Weyl semimetals. Phys Rev B 96:045112. https://doi.org/10.1103/PhysRevB.96.045112

    Article  Google Scholar 

  25. He T, Zhang X, Wang L, Liu Y, Dai X, Wang L, Liu G (2021) Ideal fully spin-polarized type-II nodal line state in half-metals X2YZ4 (X= K, Cs, Rb, Y=Cr, Cu, Z= Cl, F). Mater Today Phys 17:100360. https://doi.org/10.1016/j.mtphys.2021.100360

    Article  CAS  Google Scholar 

  26. Meng W, Zhang X, Liu Y, Dai X, Liu G (2021) Antiferromagnetism caused by excess electrons and multiple topological electronic states in the electride Ba4Al5·e. Phys Rev B 104:195145. https://doi.org/10.1103/PhysRevB.104.195145

    Article  CAS  Google Scholar 

  27. Meng W, Zhang X, He T, Jin L, Dai X, Liu Y, Liu G (2020) Ternary compound HfCuP: an excellent Weyl semimetal with the coexistence of type-I and type-II Weyl nodes. J Adv Res 24:523–528. https://doi.org/10.1016/j.jare.2020.05.026

    Article  CAS  Google Scholar 

  28. Soluyanov AA, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig BA (2015) Type-ii Weyl semimetals. Nature 527:495–498. https://doi.org/10.1038/nature15768

    Article  CAS  Google Scholar 

  29. Wang Z, Gresch D, Soluyanov AA, Xie W, Kushwaha S, Dai X, Troyer M, Cava RJ, Bernevig BA (2016) MoTe2: a type-II Weyl topological metal. Phys Rev Lett 117:056805. https://doi.org/10.1103/PhysRevLett.117.056805

    Article  CAS  Google Scholar 

  30. Koepernik K, Kasinathan D, Efremov DV, Khim S, Borisenko S, Büchner B, van den Brink J (2016) TaIrTe4: a ternary type-II Weyl semimetal. Phys Rev B 93:201101(R). https://doi.org/10.1103/PhysRevB.93.201101

    Article  CAS  Google Scholar 

  31. Chang G, Xu SY, Sanchez DS, Huang SM, Lee CC, Chang TR, Bian G, Zheng H, Belopllski I, Alidoust N, Jeng HT, Bansil A, Lin H, Hasan MZ (2016) A strongly robust type II Weyl fermion semimetal state in Ta3S2. Sci adv 2:e1600295. https://doi.org/10.1126/sciadv.1600295

    Article  CAS  Google Scholar 

  32. Meng W, Zhang X, Liu Y, Wang L, Dai X, Liu G (2021) Two-dimensional Weyl semimetal with coexisting fully spin-polarized type-I and type-II Weyl points. Appl Surf Sci 540:148318. https://doi.org/10.1016/j.apsusc.2020.148318

    Article  CAS  Google Scholar 

  33. Peng J, Liu Y, Lv H, Li Y, Lin Y, Su Y, Wu J, Liu H, Guo Y, Zhuo Z, Wu X, Wu C, Xie Y (2021) Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behavior at room temperature. Nat Chem 13:1235–1240. https://doi.org/10.1038/s41557-021-00800-4

    Article  CAS  Google Scholar 

  34. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  35. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953. https://doi.org/10.1103/PhysRevB.50.17953

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  37. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  Google Scholar 

  38. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943. https://doi.org/10.1103/PhysRevB.44.943

    Article  CAS  Google Scholar 

  39. Wu QS, Zhang SN, Song HF, Troyer M, Soluyanov AA (2018) WannierTools: an open-source software package for novel topological materials. Comput Phys Commun 224:405–416. https://doi.org/10.1016/j.cpc.2017.09.033

    Article  CAS  Google Scholar 

  40. Xu W, Ali S, Jin Y, Wu X, Xu H (2020) Intrinsic ferromagnetic semiconductors in two-dimensional alkali-based chromium chalcogenides. ACS Appl Electron Mater 2:3853–3858. https://doi.org/10.1021/acsaelm.0c00686

    Article  CAS  Google Scholar 

  41. Wang W, Dai S, Li X, Yang J, Srolovitz DJ, Zheng Q (2015) Measurement of the cleavage energy of graphite. Nat Commun 6:1–7. https://doi.org/10.1038/ncomms8853

    Article  CAS  Google Scholar 

  42. Jing Y, Ma Y, Li Y, Heine T (2017) GeP3: a small indirect band gap 2D crystal with high carrier mobility and strong interlayer quantum confinement. Nano Lett 17:1833–1838. https://doi.org/10.1021/acs.nanolett.6b05143

    Article  CAS  Google Scholar 

  43. Miao N, Xu B, Bristowe NC, Zhou J, Sun Z (2017) Tunable magnetism and extraordinary sunlight absorbance in indium triphosphide monolayer. J Am Chem Soc 139:11125–11131. https://doi.org/10.1103/PhysRevLett.116.256804

    Article  CAS  Google Scholar 

  44. Zhao S, Li Z, Yang J (2014) Obtaining two-dimensional electron gas in free space without resorting to electron doping: an electride based design. J Am Chem Soc 136:13313–13318. https://doi.org/10.1021/ja5065125

    Article  CAS  Google Scholar 

  45. Wang H, Liu E, Wang Y, Wan B, Ho CH, Miao F, Wan XG (2017) Cleavage tendency of anisotropic two-dimensional materials: ReX2 (X= S, Se) and WTe2. Phys Rev B 96:165418. https://doi.org/10.1103/PhysRevB.96.165418

    Article  Google Scholar 

  46. Ushakov AV, Kukusta DA, Yaresko AN, Khomskii DI (2013) Magnetism of layered chromium sulfides MCrS2 (M= Li, Na, K, Ag, and Au): a first-principles study. Phys Rev B 87:014418. https://doi.org/10.1103/PhysRevB.87.014418

    Article  CAS  Google Scholar 

  47. Damay F, Martin C, Hardy V, Andre G, Petit S, Maignan A (2011) Magnetoelastic coupling and unconventional magnetic ordering in the multiferroic triangular lattice AgCrS2. Phys Rev B 83:184413. https://doi.org/10.1103/PhysRevB.83.184413

    Article  CAS  Google Scholar 

  48. Evans RF, Fan WJ, Chureemart P, Ostler TA, Ellis MO, Chantrell RW (2014) Atomistic spin model simulations of magnetic nanomaterials. J Phys Condens Matter 26:103202. https://doi.org/10.1088/0953-8984/26/10/103202

    Article  CAS  Google Scholar 

  49. Zhu Y, Xu S, Chen T, Cheng X, Fang L, Hu S, Hu T, Jia F, Gao H, Ren W (2022) Prediction of 2D ferromagnetic metal VNI monolayer with tunable topological properties. J Appl Phys 132:183913. https://doi.org/10.1063/5.0107680

    Article  CAS  Google Scholar 

  50. Yu WW, Liu Y, Meng W, Liu H, Gao J, Zhang X, Liu G (2022) Phononic higher-order nodal point in two dimensions. Phys Rev B 105:035429. https://doi.org/10.1103/PhysRevB.105.035429

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grants No. 11904074). The work is funded by the Science and Technology Project of the Hebei Education Department, the Nature Science Foundation of Hebei Province, the S&T Program of Hebei (No. A2021202012), the Overseas Scientists Sponsorship Program by Hebei Province (C20210330), and the fund from the State Key Laboratory of Reliability and Intelligence of Electrical Equipment of Hebei University of Technology (No. EERI_PI2020009). One of the authors (X.M.Z.) acknowledges financial support from the Young Elite Scientists Sponsorship Program by Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefang Dai or Xiaoming Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 601 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, Y., Dai, X. et al. A ferromagnetic hybrid Weyl semimetal in two dimensions: the monolayer AgCrS2. J Mater Sci 58, 281–290 (2023). https://doi.org/10.1007/s10853-022-08043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08043-5

Navigation