Skip to main content
Log in

Thermoelectric properties of Zn-doped In0.95Ga0.05Sb crystals grown by directional solidification

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoelectric devices require p-type and n-type semiconductors with similar chemical, mechanical and thermoelectric properties to achieve maximum efficiency. To match with n-type In0.95Ga0.05Sb crystals for the fabrication of thermoelectric device, zinc (Zn) element was doped with In0.95Ga0.05Sb crystal intentionally to change its conductivity from n-type to p-type and its thermoelectric properties were studied. The Zn-doped In0.95Ga0.05Sb crystals grown by directional solidification were free from micro-cracks and their composition was distributed homogeneously. The carrier concentration was increased upon doping with Zn element. The resistivity of Zn-doped In0.95Ga0.05Sb increased with increasing temperature that showed degenerate semiconducting characteristics resulted from heavy doping. The Peierls distortion resulting from Sb–Sb interaction was observed in Zn-doped In0.95Ga0.05Sb crystals. The higher electron contribution and lower phonon contribution to total thermal conductivity were obtained in Zn-doped In0.95Ga0.05Sb than undoped crystals. The maximum ZT of 0.24 at 573 K was achieved by Zn-doped In0.95Ga0.05Sb with dopant concentration 1 × 1020 atoms/cm3. The ZT achieved is the highest among other reported values of p-type III–V semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Mamur H, Dilmac OF, Begum J, Bhuiyan MRA (2021) Thermoelectric generators act as renewable energy sources. Clean Mater 2:100030. https://doi.org/10.1016/j.clema.2021.100030

    Article  CAS  Google Scholar 

  2. Petsagkourakis I, Tybrandta K, Crispina X, Ohkubob I, Satohb N, Mori T (2018) Thermoelectric materials and applications for energy harvesting power generation. Sci Technol Adv Mate 19:836–862. https://doi.org/10.1080/14686996.2018.1530938

    Article  CAS  Google Scholar 

  3. Liu L (2014) Feasibility of large-scale power plants based on thermoelectric effects. New J Phys 16:123019. https://doi.org/10.1088/1367-2630/16/12/123019

    Article  Google Scholar 

  4. Wei J, Yang L, Ma Z, Song P, Zhang M, Ma J, Yang F, Wang X (2020) Review of current high-ZT thermoelectric materials. J Mater Sci 55:12642–12704. https://doi.org/10.1007/s10853-020-04949-0

    Article  CAS  Google Scholar 

  5. He R, Schierning G, Nielsch K (2018) Thermoelectric devices: a review of devices, architectures, and contact optimization. Adv Mater Technol 3:1700256. https://doi.org/10.1002/admt.201700256

    Article  CAS  Google Scholar 

  6. Shi XL, Zou J, Chen ZG (2020) Advanced thermoelectric design: From materials and structures to devices. Chem Rev 120:7399–7515. https://doi.org/10.1021/acs.chemrev.0c00026

    Article  CAS  Google Scholar 

  7. Akhtar MW, Lee YS, Yoo DJ, Kim JS (2017) Alumina-graphene hybrid filled epoxy composite: quantitative validation and enhanced thermal conductivity. Compos B 131:184–195. https://doi.org/10.1016/j.compositesb.2017.07.067

    Article  CAS  Google Scholar 

  8. Candolfi C, Oualid SL, Ibrahim D, Misra S, Hamouli QE, Leon A, Dauscher A, Masschelein P et al (2021) Thermoelectric materials for space applications. CEAS Sp J 13:325–340. https://doi.org/10.1007/s12567-021-00351-x

    Article  Google Scholar 

  9. Zhao D, Tan G (2014) A review of thermoelectric cooling: materials, modeling and applications. Appl Therm Eng 66:15–24. https://doi.org/10.1016/j.applthermaleng.2014.01.074

    Article  CAS  Google Scholar 

  10. Patel PC, Mishra PK, Landpal HC (2022) Fine-grained Bi−Sb ribbons with modulation-doped FeSb nanoparticles for high-temperature cryogenic applications. ACS Appl Energy Mater 5:15638–15648. https://doi.org/10.1021/acsaem.2c03225

    Article  CAS  Google Scholar 

  11. Hasan MN, Nafea M, Nayan N, Ali MSM (2022) Thermoelectric generator: materials and applications in wearable health monitoring sensors and internet of things devices. Adv Mater Technol 7:2101203. https://doi.org/10.1002/admt.202101203

    Article  Google Scholar 

  12. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114. https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  13. Wang Y, Yang L, Shi XL, Chen L, Dargusch MS, Zou J, Chen ZG (2019) Flexible thermoelectric materials and generators: challenges and innovations. Adv Mater 31:1807916. https://doi.org/10.1002/adma.201807916

    Article  CAS  Google Scholar 

  14. Yang J, Yip HL, Jen AY (2012) Rational design of advanced thermoelectric materials. Adv Energy Mater 3:549–565. https://doi.org/10.1002/aenm.201200514

    Article  CAS  Google Scholar 

  15. Gautam AK, Khare N (2023) Enhanced thermoelectric figure of merit at near room temperature in n-type binary silver telluride nanoparticles. J Mater 9:310–317. https://doi.org/10.1016/j.jmat.2022.10.003

    Article  Google Scholar 

  16. Jabar B, Qin X, Mansoor A, Ming H, Huang LL, Danish MH, Zhang J, Li D, Zhu C, Xin H, Song C (2021) Enhanced power factor and thermoelectric performance for n-type Bi2Te2.7Se0.3 based composites incorporated with 3D topological insulator nanoinclusions. Nano Energy 80:105512. https://doi.org/10.1016/j.nanoen.2020.105512

    Article  CAS  Google Scholar 

  17. Jabar B, Qin X, Mansoor A, Ming H, Huang LL, Zhang J, Danish MH, Li D, Zhu C, Zhang J, Xin H, Song C (2020) Enhanced thermoelectric performance of n-type SnxBi2Te2.7Se0.3 based composites embedded with in-situ formed SnBi and Te nanoinclusions. Compos B 197:108151. https://doi.org/10.1016/j.compositesb.2020.108151

    Article  CAS  Google Scholar 

  18. Baitimirova M, Andzane J, Petersons G, Meija R, Poplausks R, Romanova M, Erts D (2016) Vapor–solid synthesis and enhanced thermoelectric properties of non-planar bismuth selenide nanoplates on graphene substrate. J Mater Sci 51:8224–8232. https://doi.org/10.1007/s10853-016-0097-z

    Article  CAS  Google Scholar 

  19. Deng S, Jiang X, Chen L, Zhang Z, Qi N, Wu Y, Chen Z, Tang X (2021) The reduction of thermal conductivity in Cd and Sn co-doped Cu3SbSe4-based composites with a secondary-phase CdSe. J Mater Sci 56:4727–4740. https://doi.org/10.1007/s10853-020-05586-3

    Article  CAS  Google Scholar 

  20. Chen J, Sun Q, Bao D, Tian BZ, Wang Z, Tang J, Zhou D, Yang L, Chen ZG (2021) Simultaneously enhanced strength and plasticity of Ag2Se-based thermoelectric materials endowed by nano-twinned CuAgSe secondary phase. Acta Mater 220:117335. https://doi.org/10.1016/j.actamat.2021.117335

    Article  CAS  Google Scholar 

  21. Ali A, Jacob J, Arshad M, Nabi MA, Ashfaq A, Mahmood K, Amin N, Ikram S et al (2020) Enhancement of thermoelectric properties of sulphurized CZTS nano-crystals by the engineering of secondary phases. Solid State Sci 103:106198. https://doi.org/10.1016/j.solidstatesciences.2020.106198

    Article  CAS  Google Scholar 

  22. Zhang Q, Su X, Yan Y, Xie H, liang T, You Y, Tang X, Uher C, (2016) Phase segregation and superior thermoelectric properties of Mg2Si1−xSbx (0 ≤ x ≤ 0.025) prepared by ultrafast self-propagating high-temperature synthesis. ACS Appl Mater Interfaces 8:3268–3276. https://doi.org/10.1021/acsami.5b11063

    Article  CAS  Google Scholar 

  23. Li Z, Xiao C, Zhu H, Xie Y (2016) Defect chemistry for thermoelectric materials. J Am Chem Soc 138:14810–14819. https://doi.org/10.1021/jacs.6b08748

    Article  CAS  Google Scholar 

  24. Zhu B, Liu X, Wang Q, Shu Z, Guo Z, Tong Y, Juan C, Meng G, He J (2020) Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy Environ Sci 13:2106–2114. https://doi.org/10.1039/D0EE01349H

    Article  CAS  Google Scholar 

  25. Xiao Y, Zhao LD (2018) Charge and phonon transport in PbTe-based thermoelectric materials. NPJ Quantum Mater 3:55. https://doi.org/10.1038/s41535-018-0127-y

    Article  CAS  Google Scholar 

  26. Bravo MR, Moure A, Fernandex F, Gonzalez MM (2015) Skutterudites as thermoelectric materials: revisited. RSC Adv 5:41653–41667. https://doi.org/10.1039/c5ra03942h

    Article  Google Scholar 

  27. Liu KF, Xia SQ (2019) Recent progresses on thermoelectric Zintl phases: structures, materials and optimization. J Solid State Chem 270:252–264. https://doi.org/10.1016/j.jssc.2018.11.030

    Article  CAS  Google Scholar 

  28. Quinn RJ, Bos JWG (2021) Advances in half-Heusler alloys for thermoelectric power generation. Mater Adv 2:6246. https://doi.org/10.1039/d1ma00707f

    Article  CAS  Google Scholar 

  29. Wanga S, Zuo G, Kim J, Sirringhaus H (2022) Progress of conjugated polymers as emerging thermoelectric materials. Prog Polym Sci 129:101548. https://doi.org/10.1016/j.progpolymsci.2022.101548

    Article  CAS  Google Scholar 

  30. Malik YT, Akbar ZA, Seo JY, Cho S, Jang SY, Jeon JW (2022) Self-healable organic–inorganic hybrid thermoelectric materials with excellent ionic thermoelectric properties. Adv Energy Mater 12:2103070. https://doi.org/10.1002/aenm.202103070

    Article  CAS  Google Scholar 

  31. Li D, Gong Y, Chen Y, Lin J, Khan Q, Zhang Y, Li Y, Zhang H, Xie H (2020) Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett 12:36. https://doi.org/10.1007/s40820-020-0374-x

    Article  CAS  Google Scholar 

  32. Jiang B, Yu Y, Chen H, Cui J, Liu X, Xie L, He J (2021) Entropy engineering promotes thermoelectric performance in p-type chalcogenides. Nat Commun 12:3234. https://doi.org/10.1038/s41467-021-23569-z

    Article  CAS  Google Scholar 

  33. Zhang L, Shi XL, Yang YL, Chen ZG (2021) Flexible thermoelectric materials and devices: from materials to applications. Mater Today 46:62–108. https://doi.org/10.1016/j.mattod.2021.02.016

    Article  CAS  Google Scholar 

  34. Liu Q, Wang J, He G, Yang D, Zhang W, Liu J (2020) Effects of rotating magnetic field on the microstructure and properties of a GaInSb crystal. Vacuum 174:109177. https://doi.org/10.1016/j.vacuum.2020.10917

    Article  CAS  Google Scholar 

  35. Giulian R, Bolzan CA, Rossetto LT, Andrade AM, Schoffen JR, Araujo LL, Boudinov HI (2020) Atomic composition, structure, and electrical properties of In1-xGaxSb films deposited by magnetron sputtering. Thin Solid Films 709:138213. https://doi.org/10.1016/j.tsf.2020.138213

    Article  CAS  Google Scholar 

  36. Yun S, Guo T, Li Y, Zhang J, Li H, Chen J, Kang L, Huang A (2018) Fabrication and thermoelectric properties of Ga1-xInxSb compounds by solid reaction. Ceram Int 17:22023–22026. https://doi.org/10.1016/j.ceramint.2018.08.193

    Article  CAS  Google Scholar 

  37. Du Z, Yan M, Zhu J (2018) Thermoelectric performance of In0.8+yGa0.2Sb (0≤y≤0.06) ternary solid solutions with In excess. Mater. Res. Express 5:106301. https://doi.org/10.1088/2053-1591/aadb03

    Article  CAS  Google Scholar 

  38. Blom GM, Plaskett TS (1971) The In-Ga-Sb ternary phase diagram. J Electrochem Soc: Solid State Sci 118:1831–1834. https://doi.org/10.1149/1.2407845

    Article  CAS  Google Scholar 

  39. Inatomi Y, Sakata K, Arivanandhan M, Rajesh G, Nirmal Kumar V, Koyama T, Momose Y, Ozawa T, Okano Y, Hayakawa Y (2015) Growth of InxGa1-xSb alloy semiconductor at the International Space Station (ISS) and comparison with terrestrial experiments. NPJ Micrograv 1:15011. https://doi.org/10.1038/npjmgrav.2015.11

    Article  CAS  Google Scholar 

  40. Nirmal Kumar V, Hayakawa Y, Arivanandhan M, Rajesh G, KoyamaMomose Y, Ozawa T, Okano Y, Inatomi Y T (2018) Orientation-dependent dissolution and growth kinetics of InxGa1-xSb by vertical gradient freezing method under microgravity. J Cryst Growth 496–497:15–17. https://doi.org/10.1016/j.jcrysgro.2018.04.033

    Article  CAS  Google Scholar 

  41. Yu J, Nirmal IY, Kumar V, Hayakawa Y, Okano Y, Arivanandhan M, Momose Y, Pan X et al (2019) Homogeneous InGaSb crystal grown under microgravity using Chinese recovery satellite SJ-10. NPJ Micrograv 5:8. https://doi.org/10.1038/s41526-019-0068-1

    Article  Google Scholar 

  42. Nirmal Kumar V, Hayakawa Y, Udono H, Inatomi Y (2019) Enhanced thermoelectric properties of InSb: studies on In/Ga doped GaSb/InSb crystals. Intermetallics 105:21–28. https://doi.org/10.1016/j.intermet.2018.11.006

    Article  CAS  Google Scholar 

  43. Nirmal Kumar V, Arivanandhan M, Koyoma T, Udono H, Inatomi Y, Hayakawa Y (2016) Effects of varying indium composition on the thermoelectric properties of InxGa1-xSb ternary alloys. Appl Phys A 122:885. https://doi.org/10.1007/s00339-016-0409-9

    Article  CAS  Google Scholar 

  44. Nirmal Kumar V, Hayakawa Y, Udono H, Inatomi Y (2019) An approach to optimize the thermoelectric properties of III−V ternary InGaSb crystals by defect engineering via point defects and microscale compositional segregations. Inorg Chem 58:11579–11588. https://doi.org/10.1021/acs.inorgchem.9b01430

    Article  CAS  Google Scholar 

  45. Samanta M, Ghosh T, Arora R, Waghmare UV, Biswas K (2019) Realization of both n- and p-Type GeTe thermoelectrics: electronic structure modulation by AgBiSe2 alloying. J Am Chem Soc 141:19505–19512. https://doi.org/10.1021/jacs.9b11405

    Article  CAS  Google Scholar 

  46. Snyder GJ, Ursell TS (2013) Thermoelectric efficiency and compatibility. Phys Rev let 91:14. https://doi.org/10.1103/PhysRevLett.91.148301

    Article  CAS  Google Scholar 

  47. Mooradian A, Fan HY (1966) Recombination emission in InSb. Phys Rev 148(2):873–885. https://doi.org/10.1103/PhysRev.148.873

    Article  CAS  Google Scholar 

  48. Groenen J, Landa G, Carles R, Pizani PS, Gendry M (1997) Tensile and compressive strain relief in In Ga1î As epilayers grown on InP probed by Raman scattering. J Appl Phys 82:803–809. https://doi.org/10.1063/1.365775

    Article  CAS  Google Scholar 

  49. Cerdeira F, Buchenauer CJ, Pollak FH, Cardona M (1972) Stress-induced shifts of first-order Raman frequencies of diamond and zinc-blende-type semiconductors. Phys Rev B 5:580–593. https://doi.org/10.1103/PhysRevB.5.580

    Article  Google Scholar 

  50. Fischer A, Scheidt EW, Scherer W, Benson DE, Wu Y, Eklof D, Haussermann U (2015) Thermal and vibrational properties of thermoelectric ZnSb: Exploring the origin of low thermal conductivity. Phys Rev B 91:224309. https://doi.org/10.1103/PhysRevB.91.224309

    Article  CAS  Google Scholar 

  51. Wang X, Kunc K, Loa I, Schwarz U, Syassen K (2016) Effect of pressure on the Raman modes of antimony. Phys Rev B 74:134305. https://doi.org/10.1103/PhysRevB.74.134305

    Article  CAS  Google Scholar 

  52. Fu Q, Wu Z, Li J (2020) Enhanced thermoelectric properties of Zn-doped GaSb nanocomposites. RSC Adv 10:28415–28421. https://doi.org/10.1039/d0ra00898b

    Article  CAS  Google Scholar 

  53. Su XL, Li H, Tang XF (2010) Synthesis and thermoelectric properties of p-type Zn-doped ZnxIn1−xSb compounds. J Phys D: Appl Phys 43:015403. https://doi.org/10.1088/0022-3727/43/1/015403

    Article  CAS  Google Scholar 

  54. Kim HS, Gibbs ZM, Tang Y, Wang H, Snyder GJ (2015) Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater 3:041506. https://doi.org/10.1063/1.4908244

    Article  CAS  Google Scholar 

  55. Kim C, Kurosaki K, Muta H, Ohishi Y, Yamanaka S (2012) Thermoelectric properties of Zn-doped GaSb. J Appl Phys 111:043704. https://doi.org/10.1063/1.3678012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Shizuoka University, Ibaraki University and Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Japan, for the support in material preparation and analyses. We also thank for the financial support by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (Grant No JP19H02491) and CSIR-Institute of Minerals and Materials Technology, India (Project Grant OLP-114).

Author information

Authors and Affiliations

Authors

Contributions

The conception was done by N.K.V. The experiment, design and measurements were carried out by N.K.V, Y.H, H.U and Y.I. The results were analyzed and the manuscript draft was prepared by N.KV. Y.H., H.U and Y.I validated and suggested corrections in the manuscript.

Corresponding author

Correspondence to Nirmal Kumar Velu.

Ethics declarations

Conflict of interest

The authors declare no competing financial or personal interests.

Ethical approval

Not applicable.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velu, N.K., Hayakawa, Y., Udono, H. et al. Thermoelectric properties of Zn-doped In0.95Ga0.05Sb crystals grown by directional solidification. J Mater Sci 58, 7995–8004 (2023). https://doi.org/10.1007/s10853-023-08546-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08546-9

Navigation