Skip to main content
Log in

Effect of CaO-doped in NiMn2O4–LaMnO3 composite ceramics on microstructure and electrical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The composite ceramics (NiMn2O4)0.50(La1−x Ca x MnO3)0.50 (0 ≤ x ≤ 0.3) consisting of spinel-structured NiMn2O4 and perovskite-structured CaO-doped LaMnO3 were prepared by classical solid state reaction. The X-ray diffraction (XRD) patterns have shown that the major phases presented in the sintered samples are NiMn2O4 compounds with a spinel structure, La1−x Ca x MnO3 with a perovskite structure. The Scanning Electron Microscope (SEM) pictures have exhibited that the grain size of the composite ceramics decreases from ca. 6.5 to 2.0 μm as the mole fraction of CaO increases from 0 to 0.3. The ρ 25 °C and B 25/50 constants of the composite samples are in the range of 0.234–8.61 Ω cm and 2,600–2,962 K, respectively. In particular, CaO-doped leads to a decrease in the resistance drift of the (NiMn2O4)0.50(La1−x Ca x MnO3)0.50 composite NTC (negative temperature coefficient) ceramics after aging test. This indicates that the CaO-doped (NiMn2O4)0.50(La1−x Ca x MnO3)0.50 NTC ceramics display high electrical stability in comparison with the Ca-free (NiMn2O4)0.50(LaMnO3)0.50 ceramics. The X-ray photoelectron spectroscopy (XPS) analysis verifies that the valence states of the manganese ions have a highly mixed state of Mn2+, Mn3+ and Mn4+ at B site. And the electrical conduction of the composite ceramics can be elaborated by the ions migration mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Feteira, J. Am. Ceram. Soc. 92, 967 (2009)

    Article  CAS  Google Scholar 

  2. M.M. Vakiv, O.I. Shpotyuk, V.O. Balitska, B. Butkiewicz, L.I. Shpotyuk, J. Eur. Ceram. Soc. 24, 1243 (2004)

    Article  CAS  Google Scholar 

  3. T. Yokoyama, T. Meguro, Y. Shimada, J. Tatami, K. Komeya, Y. Abe, J. Mater. Sci. 42, 5860 (2007)

    Article  CAS  Google Scholar 

  4. T. Yokoyama, T. Meguro, Y. Shimada, J. Tatami, K. Komeya, Y. Abe, J. Mater. Sci. 42, 5860 (2007)

    Article  CAS  Google Scholar 

  5. R.N. Jadhav, V. Puri, J. Alloy Compd. 507, 151 (2010)

    Article  CAS  Google Scholar 

  6. Z.B. Wang, C.H. Zhao, C.S. Chen, A.J.A. Winnubst, J. Eur. Ceram. Soc. 26, 2833 (2006)

    Article  CAS  Google Scholar 

  7. K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, J. Alloy Compd. 467, 310 (2009)

    Article  CAS  Google Scholar 

  8. C.H. Zhao, Z.B. Wang, S.M. Wang, P.H. Yang, C.S. Chen, J. Electroceram. 20, 113 (2008)

    Article  CAS  Google Scholar 

  9. W. Luo, H.M. Yao, P.H. Yang, C.S. Chen, J. Am. Ceram. Soc. 92, 2682 (2009)

    Article  CAS  Google Scholar 

  10. M.L. Singla, S. Awasthi, A. Srivastava, D.V.S. Jain, Sens. Actuators A 136, 604 (2007)

    Article  Google Scholar 

  11. I. Maurin, P. Barboux, Y. Lassailly, J.P. Boilot, J. Solid State Chem. 160, 123 (2001)

    Article  CAS  Google Scholar 

  12. Z. Branković, K. Ðuriš, A. Radojković, S. Bernik, Z. Jaglićić, M. Jagodić, K. Vojisavljevic, J. Sol–Gel Sci. Technol. 55, 311 (2010)

    Article  Google Scholar 

  13. S. Guillemet-Fritsch, J.L. Baudour, C. Chanel, F. Bouree, A. Rousset, Solid State Ion. 132, 63 (2000)

    Article  CAS  Google Scholar 

  14. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  15. K. Park, I.H. Han, J. Electroceram. 17, 1079 (2006)

    Article  CAS  Google Scholar 

  16. P.N. Lisboa-Filho, M. Bahout, P. Barahona, C. Moure, O. Pena, J. Phys. Chem. Solids 66, 1206 (2005)

    Article  CAS  Google Scholar 

  17. Y. Boudeville, F. Fiqueras, M. Forissier, J.L. Portefaix, J.C. Vedrine, J. Catal. 58, 52 (1979)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the National Natural Science Foundation of China (Grant No. 50902148) and the “Western Light Joint Scholar Foundation” Program of Chinese Academy of Sciences (No. RCPY200901) for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, F., Zhang, H., Chang, A. et al. Effect of CaO-doped in NiMn2O4–LaMnO3 composite ceramics on microstructure and electrical properties. J Mater Sci: Mater Electron 23, 1728–1733 (2012). https://doi.org/10.1007/s10854-012-0654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0654-4

Keywords

Navigation