Skip to main content
Log in

Structural and optical properties of Cd1−xZnxS (0 ≤ x ≤ 0.3) nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cd1−xZnxS nanoparticles for Zn = 0–30 % were successfully synthesized by a conventional chemical co-precipitation method at room temperature. X-ray diffraction spectra confirmed the pure zinc blend cubic structure of undoped CdS; but Zn-doping on Cd–S matrix induced the mixed phases of cubic and hexagonal structure. The reduced crystal size, d-value, cell parameters and higher micro-strain at lower Zn concentration were due to the distortion produced by Zn2+ in Cd–S lattice. The enhancing diffraction intensity at lower Zn concentrations was due to the substitution of Zn2+ ions instead of Cd2+ ions whereas the reduced intensity after 20 % was due to the presence of Zn2+ ions both as substitutionally and interstitially in Cd–S lattice. The nominal stoichiometry and chemical purity was confirmed by energy dispersive X-ray analysis. The initial blue shift of energy gap from undoped CdS (3.75 eV) to Zn = 10 % (3.82 eV) was due to the size effect and also the incorporation of Zn2+ in the Cd–S lattice. The observed red shift of energy gap at higher Zn concentrations could be attributed to the improved crystallinity. The band gap tailoring was useful to design a suitable window material in fabrication for solar cells and other opto-electronic devices. The characteristic IR peaks around 617–619 cm−1 and the reduced intensity by Zn-doping confirmed the presence of Zn in Cd–S lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Gu, E.S. Kwak, J.L. Lensch, J.E. Aller, T.W. Odam, L.J. Lauhon, Appl. Phys. Lett. 87, 043111 (2005)

    Article  Google Scholar 

  2. P.K.C. Pillai, N. Shroff, A.K. Tripathi, J. Phys. D Appl. Phys. 16, 39 (1983)

    Article  Google Scholar 

  3. R. Agrawal, C. Barrelet, C.M. Lieber, Nano Lett. 5, 917 (2005)

    Article  Google Scholar 

  4. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Merag, Y.Q. Li, S.T. Lee, Nano Lett. 6, 1887 (2006)

    Article  Google Scholar 

  5. M.C. Baykul, N. Orhan, Thin Solid Films 518, 1925 (2010)

    Article  Google Scholar 

  6. S.D. Chauhan, S. Senthilarasu, S.H. Lee, Appl. Surf. Sci. 29, 4539 (2008)

    Google Scholar 

  7. T.P. Kumar, S.S. Kumar, K. Sankaranarayanan, Appl. Surf. Sci. 257, 1923 (2011)

    Article  Google Scholar 

  8. P. Kumar, A. Misra, D. Kumar, N. Dhama, T.P. Sharma, P.N. Dixit, Opt. Mater. 27, 261 (2004)

    Article  Google Scholar 

  9. L.C. Burton, T.L. Hench, Appl. Phys. Lett. 29, 612 (1976)

    Article  Google Scholar 

  10. T. Yamaguchi, Y. Yamamoto, T. Tanaka, Y. Demizu, A. Yoshida, Thin Solid Films 281–282, 372 (1996)

    Google Scholar 

  11. O.M. Hussain, P.S. Reddy, B.S. Naidu, S. Uthanna, P.J. Reddy, Semicond. Sci. Technol. 6, 690 (1991)

    Article  Google Scholar 

  12. I.O. Oladeji, L. Chow, Thin Solid Films 474, 77 (2005)

    Article  Google Scholar 

  13. M. Bedir, R. Kayali, M. Oztas, Turk. J. Phys. 26, 121 (2002)

    Google Scholar 

  14. S. Jana, R. Maity, S. Das, M.K. Mitra, K.K. Chattopadhyay, Phys. E 39, 109 (2007)

    Article  Google Scholar 

  15. H. Sekhar, D.N. Rao, J. Mater. Sci. 47, 1964 (2012)

    Article  Google Scholar 

  16. F. Yang, N.-N. Yan, S. Huang, Q. Sun, L.-Z. Zhang, Y. Yu, J. Phys. Chem. C 116, 9078 (2012)

    Article  Google Scholar 

  17. M.S. Hossain, M.A. Islam, Q. Huda, M.M. Aliyu, T. Razykov, M.M. Alam, Z.A. AlOthman, K. Sopian, N. Amin, Thin Solid Films 548, 202 (2013)

    Article  Google Scholar 

  18. H. Alehdaghi, M. Marandi, M. Molaei, A. Irajizad, N. Taghavinia, J. Alloys Compd. 586, 280 (2014)

    Article  Google Scholar 

  19. R.E. Bailey, S. Nie, J. Am. Chem. Soc. 125, 7100 (2003)

    Article  Google Scholar 

  20. X. Zhong, S. Liu, Z. Zhang, L. Li, W. Knoll, J. Mater. Chem. 14, 2790 (2004)

    Article  Google Scholar 

  21. H. Wu, Y. Yao, W. Li, L. Zhu, N. Ni, X. Zhang, J. Nanopart. Res. 13, 2225 (2010)

    Article  Google Scholar 

  22. J. Zhua, J. Zhanga, J. Zhena, C. Chena, J. Lua, S. Chenb, Phys. B 405, 3452 (2010)

    Article  Google Scholar 

  23. S. Arora, S.S. Manoharan, Opt. Mater. 31, 176 (2008)

    Article  Google Scholar 

  24. N.A. Al-Tememee, N.M. Saeed, S.M.A. Al-Dujayli, T.C. Baha, Adv. Mater. Phys. Chem. 2, 69 (2012)

    Article  Google Scholar 

  25. R. Mariappan, V. Ponnuswamy, M. Ragavendar, D. Krishnamoorthi, C. Sankar, J. Optik 123, 1098 (2012)

    Article  Google Scholar 

  26. Z. Sedaghat, N. Tagavinia, M. Marandi, J. Nanotechnol. 17, 3812 (2006)

    Article  Google Scholar 

  27. J.M. Dona, J. Herrero, Thin Solid Films 268, 5 (1995)

    Article  Google Scholar 

  28. S. Muthukumaran, R. Gopalakrishnan, J. Sol Gel. Sci. Technol. 62, 193 (2012)

    Article  Google Scholar 

  29. I. Carreón-Moncada, L.A. González, M.I. Pech-Canul, R. Ramírez-Bon, Thin Solid Films 548, 270 (2013)

    Article  Google Scholar 

  30. M. Kamruzzaman, T.R. Luna, J. Podder, M.G.M. Anowar, Semicond. Sci. Technol. 27, 035017 (2012)

    Article  Google Scholar 

  31. J. Pelleg, E. Elish, J. Vac. Sci. Technol. A 20, 754 (2002)

    Article  Google Scholar 

  32. C.F. Rong, G.D. Watkins, Phys. Rev. Lett. 58, 1486 (1989)

    Article  Google Scholar 

  33. I. Litty, V.P.N. Nampoori, P. Radhkrishnan, J. Appl. Phys. 103, 094914 (2008)

    Article  Google Scholar 

  34. C. Wang, H.M. Wang, Z.Y. Fang, J. Alloys Compd. 486, 702 (2009)

    Article  Google Scholar 

  35. S.S. Lin, J.L. Huang, Surf. Coat. Technol. 185, 222 (2004)

    Article  Google Scholar 

  36. K.S. Kumar, A. Divya, P.S. Reddy, Appl. Surf. Sci. 257, 9515 (2011)

    Article  Google Scholar 

  37. Y. Wang, G. Ouyang, L.L. Wang, L.M. Tang, D.S. Tang, C.Q. Sun, Chem. Phys. Lett. 463, 383 (2008)

    Article  Google Scholar 

  38. S.S. Kawar, B.H. Pawar, Chalcogenide Lett. 6, 219 (2009)

    Google Scholar 

  39. R.N. Bhattacharya, K. Ramanathan, L. Gedvilas, B. Keyes, J. Phys. Chem. Solids 66, 1862 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devadoss, I., Muthukumaran, S. & Ashokkumar, M. Structural and optical properties of Cd1−xZnxS (0 ≤ x ≤ 0.3) nanoparticles. J Mater Sci: Mater Electron 25, 3308–3317 (2014). https://doi.org/10.1007/s10854-014-2019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2019-7

Keywords

Navigation