Skip to main content
Log in

Structural, morphological and spectroscopic investigation of Mn doped Zn0.96Cu0.04O nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn0.96−xCu0.04MnxO (0 ≤ x ≤ 0.04) nanoparticles were synthesized by sol–gel method. The X-ray diffraction pattern indicated that doping of Mn and Cu did not change the ZnO hexagonal wurtzite structure. The Mn doped nanoparticles had smaller average crystalline size than un-doped Zn0.96Cu0.04O nanoparticles due to the distortion in the host ZnO lattice. This distortion prevented the subsequent growth and hence the size reduced by Mn doping. The changes in lattice parameters, average crystalline size, peak position and peak intensity confirmed the Mn substitution in Zn–Cu–O lattice. The dielectric constant also varied by depend the size of the nanoparticles. The change in morphology by Mn-doping was studied by scanning electron microscope and the presence of compositional elements such as Mn, Cu and Zn with their nominal stoichiometry was confirmed by energy dispersive X-ray spectra. The optical absorption and band gap were changed with respect to both compositional and size effects. The band gap was initially increased from 3.65 to 3.73 eV at 1 % of Mn doping, while decreasing trend in band gap was noticed for further increase of Mn. The band gap was decreased from 3.73 to 3.48 eV when Mn concentration was increased from 2 to 4 %. Presence of chemical bonding and purity of the nanoparticles were confirmed by FTIR spectra. The Mn and Cu co-doping increased the charge carrier density in ZnO which led to increase the dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Liao, D.H. Liu, J.C. Li, C. Liu, Q. Fu, M.S. Ye, Appl. Surf. Sci. 240, 175–179 (2005)

    Article  Google Scholar 

  2. S. Singh, M.S.R. Rao, Phys. Rev. B 80, 045210 (2009)

    Article  Google Scholar 

  3. V.A. Karpina, V.I. Lazorenko, C.V. Lashkarev, V.D. Dobrowolski, L.I. Kopylova, V.A. Baturin, S.A. Lytuyn, V.P. Ovsyannikov, E.A. Mauvenko, Cryst. Res. Technol. 39, 980 (2004)

    Article  Google Scholar 

  4. S.F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Mater. Sci. Eng. R 62, 1 (2008)

    Article  Google Scholar 

  5. N. Bai, T.Y. Tseng, J. Appl. Phys. 74, 695 (1993)

    Article  Google Scholar 

  6. M. Sima, I. Enculescu, M. Sima, M. Enache, E. Vasile, J.P. Ansermet, Phys. Stat. Solidi B 244, 1522 (2007)

    Article  Google Scholar 

  7. S. Yilmaz, M. Parlak, S. Ozcan, M. Altunbas, E. McGlynn, E. Bacaksiz, Appl. Surf. Sci. 257, 9293 (2011)

    Article  Google Scholar 

  8. M. Nirmala, A. Anukaliani, Mater. Lett. 65, 2645 (2011)

    Article  Google Scholar 

  9. Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, T. Wu, J. Phys. Chem. C 112, 9579 (2008)

    Article  Google Scholar 

  10. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H.M. Ng, W. Jiang, E.L. Garfunkel, Appl. Phys. Lett. 83, 3401 (2003)

    Article  Google Scholar 

  11. P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Magn. Magn. Mater. 321, 3457 (2009)

    Article  Google Scholar 

  12. K. Sato, H.K. Yoshida, Jpn. J. Appl. Phys. 40, L334 (2001)

    Article  Google Scholar 

  13. L.-H. Ye, A.J. Freeman, B. Delley, Phys. Rev. B 73, 033203 (2006)

    Article  Google Scholar 

  14. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012)

    Article  Google Scholar 

  15. Y. Wei, D. Hou, S. Qiao, C. Zhen, G. Tang, Phys. B 404, 2486 (2009)

    Article  Google Scholar 

  16. K.C. Sebastian, M. Chawda, L. Jonny, D. Bodas, Mater. Lett. 64, 2269 (2010)

    Article  Google Scholar 

  17. J. Yang, L. Fei, H. Liu, Y. Liu, M. Gao, Y. Zhang, L. Yang, J. Alloys Compd. 509, 3672 (2011)

    Article  Google Scholar 

  18. Y.S. Sonawane, K.G. Kanade, B.B. Kale, R.C. Aiyar, Mater. Res. Bull. 43, 2719 (2008)

    Article  Google Scholar 

  19. D.B. Buchholz, R.P.H. Changa, J.H. Song, J.B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005)

    Article  Google Scholar 

  20. K.G. Kanade, B.B. Kale, J.O. Baeg, S.M. Lee, C.W. Lee, C.W. Lee, S. Moon, H. Chang, Mater. Chem. Phys. 102, 98 (2007)

    Article  Google Scholar 

  21. E. Chikoidze, Y. Dumont, F. Jomard, O. Gorochov, Thin Solid Films 515, 8519 (2007)

    Article  Google Scholar 

  22. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 73, 3366 (1999)

    Article  Google Scholar 

  23. M.S. Niasari, F. Davar, A. Khansari, J. Alloys Compd. 509, 61 (2011)

    Article  Google Scholar 

  24. Y. Yang, H. Chen, B. Zhao, X. Bao, J. Cryst. Growth 263, 447 (2004)

    Article  Google Scholar 

  25. J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, S.T. Lee, Chem. Mater. 14, 1216 (2002)

    Article  Google Scholar 

  26. M. Oztas, M. Bedir, Thin Solid Films 516, 1703 (2008)

    Article  Google Scholar 

  27. J. Mera, J. Doria, C. Cordoba, O. Paredes, A. Gomez, C. Paucar, D. Fuchs, O. Moran, Phys. B 405, 3463 (2010)

    Article  Google Scholar 

  28. J. Pelleg, E. Elish, J. Vac. Sci. Technol. A 20, 754 (2002)

    Article  Google Scholar 

  29. B.D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, Reading, 1978)

    Google Scholar 

  30. G. Srinivasan, R.T.R. Kumar, J. Kumar, J. Solgel Sci. Technol. 43, 171 (2007)

    Article  Google Scholar 

  31. U. Ozgur, Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V.A. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  32. C. Solliard, M. Flueli, Surf. Sci. 156, 487 (1985)

    Article  Google Scholar 

  33. H.S. Shin, J. Yu, J.Y. Song, H.M. Park. Appl. Phys. Lett. 94, 011906 (2009)

    Article  Google Scholar 

  34. O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K. Ono, B.R. Cuenya, H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010)

    Article  Google Scholar 

  35. M. Ashokkuamr, S. Muthukumaran, J. Mater. Sci. Mater. Electron. 24, 4050 (2013)

    Article  Google Scholar 

  36. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, Phys. Rev. B 33, 8207 (1986)

    Article  Google Scholar 

  37. Z. Yang, Z. Ye, Z. Xu, B. Zhao, Physica E 42, 116 (2009)

    Article  Google Scholar 

  38. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Parts-A And B (Wiley, New York, 1997)

    Google Scholar 

  39. M. Arshad, A. Azam, A.S. Ahmea, S. Mollah, A.H. Naqvi, J. Alloys Compd. 509, 8378 (2011)

    Article  Google Scholar 

  40. R. Silva, M. Zaniquelli, Colloid Surf. A 198, 551 (2002)

    Article  Google Scholar 

  41. T. Pandiyarajan, B. Karthikeyan, J. Nanopart. Res. 14, 647 (2012)

    Article  Google Scholar 

  42. T. Prodromakis, C. Papavassiliu, Appl. Surf. Sci. 255, 6989 (2009)

    Article  Google Scholar 

  43. M.K. Gupta, B. Kumar, J. Alloys Compd. 509, L208 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grant Commission (UGC), New Delhi, India, for financial support under the project [File No. 41-968/2012 (SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashokkumar, M., Muthukumaran, S. Structural, morphological and spectroscopic investigation of Mn doped Zn0.96Cu0.04O nanoparticles. J Mater Sci: Mater Electron 26, 1225–1233 (2015). https://doi.org/10.1007/s10854-014-2529-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2529-3

Keywords

Navigation