Skip to main content

Advertisement

Log in

Highly crystalline silicon carbide thin films grown at low substrate temperature by HWCVD technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly crystalline cubic Silicon carbide (3C-SiC) thin films were deposited on quartz and silicon substrate at low substrate temperature of 400 °C by hot wire chemical vapour deposition technique using Silane, methane and hydrogen gases. The influence of methane flow rate (MFR) on structural and electrical properties of films has been investigated. All the deposited films are highly crystalline with crystallite size as high as 27 nm for film deposited with MFR = 6 SCCM. A decrease in crystallite size is observed with increase in MFR. Electrical conductivity of films deposited at low MFR (6–12 SCCM) is ~1 Ω−1 cm−1, however an order of decrease in conductivity has been observed as MFR increases beyond 12 SCCM. Activation energy of films also decreases monotonically with increasing MFR. The variation in dark conductivity and activation energy could be attributed to the microstructural changes in films with increasing MFR. No trace of any contamination of filament material is observed in these films. These highly crystalline and conductive films find applications in various microelectronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Zhang, C. Carraro, R.T. Howe, R. Maboudian, Electrical, mechanical and metal contact properties of polycrystalline 3C-SiC films for MEMS in harsh environments. Surf. Coat. Technol. 201, 8893–8898 (2007)

    Article  Google Scholar 

  2. S. Noh, J. Seo, E. Lee, The fabrication by using surface MEMS of 3C-SiC micro-heaters and RTD sensors and their resultant properties. Trans. Electr. Electron. Mater. 10, 131–134 (2009)

    Article  Google Scholar 

  3. M.V. Pelegrini, G.P. Rehder, I. Pereyra, a-SiC: H films deposted by PECVD for MEMS applications. Phys. Status Solidi C7, 786–789 (2010)

    Google Scholar 

  4. V.A. Gubanov, C.Y. Fong, Doping in cubic silicon-carbide. Appl. Phys. Lett. 75, 88–90 (1999)

    Article  Google Scholar 

  5. J. Xu, J. Mei, Y. Rui, D. Chen, Z. Cen, W. Li, Z. Ma, L. Xu, X. Haung, K. Chen, UV and blue light emission from SiC nanoclusters in annealed amorphous SiC alloys. J. Non-Cryst. Solids 352, 1398–1401 (2006)

    Article  Google Scholar 

  6. J. Huran, B. Zatko, P. Bohacek, V.N. Shvetsov, A.P. Kobzev, Study of wide band gap nanocrystalline silicon carbide films for radiation imaging detectors. Nucl. Instr. Meth. Phys. Res. A 633, S75–S77 (2011)

    Article  Google Scholar 

  7. Y. Huang, A. Dasgupta, A. Gordijn, F. Finger, R. Carius, Highly transparent microcrystalline silicon carbide grown with hot wire chemical vapor deposition as window layers in n-i-p microcrystalline silicon solar cells. Appl. Phys. Lett. 90, 203502 (2007)

    Article  Google Scholar 

  8. F. Finger, O. Astakhov, T. Bronger, R. Carius, T. Chen, A. Dasgupta, A. Gordijn, L. Houben, Y. Huang, S. Klein, Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells. Thin Solid Films 517, 3507–3512 (2009)

    Article  Google Scholar 

  9. I.A. Yunaz, K. Hashizume, S. Miyajima, A. Yamada, M. Konagai, Fabrication of amorphous silicon carbide films using VHF-PECVD for triple-junction thin-film solar cell applications. Sol. Energy Mater. Sol. Cells 93, 1056–1061 (2009)

    Article  Google Scholar 

  10. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, large-band gap SiC, III–V nitride, and II–VI ZnSe-based semiconductors device technologies. J. Appl. Phys. 76, 1363–1398 (1994)

    Article  Google Scholar 

  11. W.J. Choyke, H. Matsunami, G. Pensl, Silicon Carbide: Recent Major Advances, 2nd edn. (Springer, New York, 2003)

    Google Scholar 

  12. W. Daves, A. Krauss, N. Behnel, V. Haublein, A. Bauer, L. Frey, Amorphous silicon carbide thin films(a-SiC:H) deposited by plasma enhanced chemical vapour deposition as protective coating for harsh environment applications. Thin Solid Films 519, 5892–5898 (2011)

    Article  Google Scholar 

  13. A. Dasgupta, Y. Huang, L. Houben, S. Klein, F. Finger, R. Carius, M. Luysberg, Effect of filament and substrates on the structural and electrical properties of SiC thin films grown by the HWCVD technique. Thin Solid Films 516, 622–625 (2008)

    Article  Google Scholar 

  14. A. Tabata, Y. Komura, Preparation of nanocrystalline cubic silicon carbide thin films by hot-wire CVD at various filament-to-substrate distances. Surf. Coat. Technol. 201, 8986–8990 (2007)

    Article  Google Scholar 

  15. Y. Komura, A. Tabata, T. Naritu, A. Kondo, T. Mizutani, Nanocrystalline cubic silicon carbide films prepared by hot-wire chemical vapor deposition using SiH4/CH4/H2 at a low substrate temperature. J. Non-Cryst. Solids 352, 1367–1370 (2006)

    Article  Google Scholar 

  16. A. Tabata, Y. Komura, Y. Hoshide, T. Naritu, A. Kondo, Properties of nanocrystalline cubic silicon carbide thin films prepared by Hot-Wire chemical vapor deposition using SiH4/CH4/H2 at various substrate temperatures. Jpn. J. Appl. Phys. 47, 561–565 (2008)

    Article  Google Scholar 

  17. A. Kumbhar, S.B. Patil, S. Kumar, R. Lal, R.O. Dusane, Photoluminescent, wide-bandgap a-SiC: H alloy films deposited by Cat-CVD using acetylene. Thin Solid Films 395, 244–248 (2001)

    Article  Google Scholar 

  18. T. Itoh, Y. Katoh, T. Fujiwara, K. Fukunaga, S. Nonomura, S. Nitta, Preparation of Silicon-carbon alloy films by hot-wire CVD and their properties. Thin Solid Films 395, 240–243 (2001)

    Article  Google Scholar 

  19. F.S. Tehrani, B.T. Goh, M.R. Muhamad, S.A. Rahman, Pressure dependent structural and optical properties of silicon carbide thin films deposted by hot wire chemical vapour deposition from pure silane and methane gases. J. Mater. Sci. Mater. Electron. 24, 1361–1368 (2013)

    Article  Google Scholar 

  20. S. Miyajima, K. Haga, A. Yamada, M. Konagai, Low-temperature deposition of highly conductive n-type hydrogenated nanocrystalline cubic SiC films for solar cell applications. Jpn. J. Appl. Phys. 45, L432–L434 (2006)

    Article  Google Scholar 

  21. H. Matsumura, Formation of silicon-based thin films prepared by catalytic chemical vapor deposition (Cat-CVD) method. Jpn. J. Appl. Phys. 37, 3175–3187 (1998)

    Article  Google Scholar 

  22. S. Zhang, L. Raniero, E. Fortunato, L. Pereira, N. Martins, P. Canhola, I. Ferreira, N. Nedev, H. Aguas, R. Martins, Characterization of silicon carbide thin films prepared by VHF-PECVD technology. J. Non-Cryst. Solids 338–340, 530–533 (2004)

    Article  Google Scholar 

  23. W. Yu, W. Lu, Y. Yang, C. Wang, L. Zhang, G. Fu, Fabrication of nanocrystalline silicon carbide thin film by helicon wave plasma enhanced chemical vapour deposition. Thin Solid Films 515, 2949–2953 (2007)

    Article  Google Scholar 

  24. Q. Cheeng, S. Xu, J.W. Chai, S.Y. Huang, Y.P. Ren, J.D. Long, P.P. Rutkevych, K. Ostrikov, Influence of hydrogen dilution on the growth of nanocrystalline silicon carbide films by low-frequency inductively coupled plasma chemical vapour deposition. Thin Solid Films 516, 5991–5995 (2008)

    Article  Google Scholar 

  25. Z. Hua, X. Liao, H. Diao, G. Kong, X. Zeng, Y. Xu, Amorphous silicon carbide films prepared by H2 diluted silane–methane plasma. J. Cryst. Growth 264, 7–12 (2004)

    Article  Google Scholar 

  26. Y. Komura, A. Tabata, T. Narita, A. Kondo, Influence of gas pressure on low-temperature preparation and film properties of nanocrystalline 3C-SiC thin films by HW-CVD using SiH4/CH4/H2 system. Thin Solid Films 516, 633–636 (2008)

    Article  Google Scholar 

  27. F.S. Tehrani, S.A. Rahman, Influence of filament to substrate distance on the spectroscopic, structural and optical properties of silicon carbide thin films deposited by HWCVD technique. J. Mater. Sci. Mater. Electron. 25, 2366–2373 (2014)

    Article  Google Scholar 

  28. H.S. Jha, M. Singh, A. Yadav, Lalhriatzuala, D. Deva, P. Agarwal, Nanocrystalline cubic Silicon Carbide thin films for the window layer of solar cells deposited by Hot Wire CVD. Proc. SPIE 8549, 85493D (2012)

    Article  Google Scholar 

  29. Y. Hoshide, Y. Komura, A. Tabata, A. Kitagawa, A. Kondo, Importance of H2 gas for growth of hot-wire CVD nanocrystalline 3C-SiC from SiH4/CH4/H2. Thin Solid Films 517, 3520–3523 (2009)

    Article  Google Scholar 

  30. A. Tabata, A. Naito, Structural changes in tungsten wire and their effect on the properties of hydrogenated nanocrystalline cubic silicon carbide thin films. Thin Solid Films 519, 4451–4454 (2011)

    Article  Google Scholar 

  31. J. Gubicza, S. Nauyoks, L. Balogh, J. Labar, T.W. Zerdaa, T. Ungár, Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC. J. Mater. Res. 22, 1314–1321 (2007)

    Article  Google Scholar 

  32. A. Dasgupta, S. Klein, L. Houben, R. Carius, F. Finger, M. Luysberg, Microstructure of highly crystalline silicon carbide thin films grown by HWCVD technique. Thin Solid Films 516, 618–621 (2008)

    Article  Google Scholar 

  33. R.J. Nemanish, J.T. Glass, G. Lucovosky, R.E. Schorder, Raman scattering characterization of carbon bonding in diamond and diamond like thin films. J. Vac. Sci. Technol. A6, 1783–1787 (1988)

    Article  Google Scholar 

  34. C. Popov, W. Kulisch, P.N. Gibson, G. Ceccone, M. Jelinek, Growth and characterization of nanocrystalline diamond/amorphous carbon composite films prepared by MWCVD. Diam. Relat. Mater. 13, 1371–1376 (2004)

    Article  Google Scholar 

  35. T. Hao, H. Zhang, C. Shi, G. Han, Nano-crystalline diamond films synthesizes at low temperature and low pressure by hot filament chemical vapour deposition. Surf. Coat. Technol. 201, 801–806 (2006)

    Article  Google Scholar 

  36. P.K. Chu, L. Li, Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96, 253–277 (2006)

    Article  Google Scholar 

  37. A.C. Ferrari, J. Robertson, Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405 (2001)

    Article  Google Scholar 

  38. T. Rajagopalan, X. Wang, B. Lahlouh, C. Ramkumar, P. Dutta, S. Gangopadhyay, Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization. J. Appl. Phys. 94, 5252–5260 (2003)

    Article  Google Scholar 

  39. W.K. Choi, T.Y. Ong, L.S. Tan, F.C. Loh, K.L. Tan, Infrared and x-ray photoelectron spectroscopy studies of as-prepared and furnace-annealed radio-frequency sputtered amorphous silicon carbide films. J. Appl. Phys. 83, 4968–4973 (1998)

    Article  Google Scholar 

  40. Z. Li, J. Bian, H. He, X. Zhang, G. Han, The effect of relatively low hydrogen dilution on the properties of carbon-rich hydrogenated amorphous silicon carbide films. J. Phys. Conf. Ser. 276, 012173 (2011)

    Article  Google Scholar 

  41. B.P. Swain, The analysis of carbon bonding environment in HWCVD deposited a-SiC: H films by XPS and Raman spectroscopy. Surf. Coat. Technol. 201, 1589 (2006)

    Article  Google Scholar 

  42. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomber, Handbook of X-ray Photoelectron Spectroscopy, 2nd edn. (Perkin-Elmer, Eden Prairie, 1992)

    Google Scholar 

Download references

Acknowledgments

The work reported here is supported by Board for Research in Fusion Science and Technology (BRFST). We are very thankful to DST, New Delhi (FIST program, Ref. No.: SR/FST/PSII-020/2009) for XRD and Central Instrument Facility, IIT Guwahati, for Raman measurements. We are also very thankful to Dr. D.M. Phase, UGC-DAE Consortium for Scientific Research, Indore, for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratima Agarwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, H.S., Agarwal, P. Highly crystalline silicon carbide thin films grown at low substrate temperature by HWCVD technique. J Mater Sci: Mater Electron 26, 1381–1388 (2015). https://doi.org/10.1007/s10854-014-2550-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2550-6

Keywords

Navigation