Skip to main content

Advertisement

Log in

Optimization of precursor based on optical, structural and magnetic properties of Cu-doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu doped ZnO nanoparticles were synthesized via co-precipitation method using different precursors like zinc chloride, zinc acetate and zinc nitrate. The crystallite structure, morphology and optical properties were discussed by X-ray diffraction, scanning electron microscopy and UV–visible photo-spectrometer for different precursors. The hexagonal structure was confirmed by X-ray diffraction. The calculated average crystallite size from XRD spectra was low for zinc chloride precursor (22.3 nm) and high for zinc nitrate precursor (26 nm). The strong and transparent behaviour in the visible region of the sample using zinc nitrate precursor is due to the existence of less defects and enhanced crystal size which leads to the industrial applications especially as transparent electrode. The reduction in strain and the better crystallinity effectively depress interstitial defects. The energy gap is varied between 3.65 and 3.75 eV, where zinc nitrate precursor has Eg = 3.65 eV (minimum) and zinc acetate precursor has Eg = 3.75 eV (maximum). The observed higher energy gap using zinc chloride precursor could be attributed to the poor crystallinity and also the formation of the new compound based on Cu and Zn. The low energy gap for zinc nitrate precursor can be attributed to the better crystallinity with increasing grain size. Change in luminescence intensity and magnetization were discussed based on the defects formation and structural parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushana, R.P.S. Chakradhar, C. Shivakumara, J.L. Rao, B.M. Nagabhushana, J. Alloys Compd. 509, 5349 (2011)

    Article  Google Scholar 

  2. N.Y. Garces, L. Wang, L. Bai, N.C. Giles, L.E. Halliburton, G. Cantwell, Appl. Phys. Lett. 81, 622 (2002)

    Article  Google Scholar 

  3. P. Fons, A. Yamada, K. Iwata, K. Matsubara, S. Niki, K. Nakahara, H. Takasul, Nucl. Instrum. Methods Phys. Res. B 199, 190 (2003)

    Article  Google Scholar 

  4. M. Ferhat, A. Zaoui, R. Ahuja, Appl. Phys. Lett. 94, 142502 (2009)

    Article  Google Scholar 

  5. Y. Wei, D. Hou, S. Qiao, C. Zhen, G. Tang, Phys. B 404, 2486 (2009)

    Article  Google Scholar 

  6. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 1946 (2012)

    Article  Google Scholar 

  7. H. Liu, J. Yang, Z. Hua, Y. Zhang, L. Yang, L. Xiao, Z. Xie, Appl. Surf. Sci. 256, 4162 (2010)

    Article  Google Scholar 

  8. S. Muthukumaran, R. Gopalakrishnan, Phys. B 407, 3448 (2012)

    Article  Google Scholar 

  9. J. Pelleg, E. Elish, J. Vac. Sci. Technol. A 20, 754 (2002)

    Article  Google Scholar 

  10. B.D. Cullity, Elements of X-ray Diffractions (Addison-Wesley, Reading, MA, 1978)

    Google Scholar 

  11. G. Srinivasan, R.T.R. Kumar, J. Kumar, J. Sol-Gel. Sci. Technol. 43, 171 (2007)

    Article  Google Scholar 

  12. O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K. Ono, B.R. Cuenya, H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010)

    Article  Google Scholar 

  13. H. Zheng, J.L. Song, Q. Jiang, J.S. Lian, Appl. Surf. Sci. 258, 6735 (2012)

    Article  Google Scholar 

  14. J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, C. Yon, Chem. Mater. 14, 4172 (2002)

    Article  Google Scholar 

  15. C.H. Xia, C.G. Hu, C.H. Hu, Z. Ping, F. Wang, Bull. Mater. Sci. 34, 1083 (2011)

    Article  Google Scholar 

  16. M.H. Huang, Y.Y. Wu, H.N. Feich, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13, 113 (2001)

    Article  Google Scholar 

  17. Y.M. Sun, Study on the synthesis and physical properties of ZnO-based diluted magnetic semiconductors. Ph.D. thesis, University of Science and Technology of China, 2000

  18. C. Li, G. Fang, Q. Fu, F. Su, G. Li, X. Wu, X. Zhao, J. Cryst. Growth 292, 19 (2006)

    Article  Google Scholar 

  19. M. Öztas, M. Bedir, Thin Solid Films 516, 1703 (2008)

    Article  Google Scholar 

  20. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  21. Y. Wang, G. Ouyang, L.L. Wang, L.M. Tang, D.S. Tang, C.Q. Sun, Chem. Phys. Lett. 463, 383 (2008)

    Article  Google Scholar 

  22. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Parts-A and B (Wiley, New York, 1997)

    Google Scholar 

  23. S. Senthilkumaar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Mater. Sci. Semi. Process 11, 6 (2008)

    Article  Google Scholar 

  24. H. Kleinwechter, C. Janzen, J. Knipping, H. Wiggers, P. Roth, J. Mater. Sci. 7, 4349 (2002)

    Article  Google Scholar 

  25. M. Deepa, N. Bahadur, A.K. Srivastava, P. Chaganti, K.N. Sood, J. Phys. Chem. Solids 70, 291 (2009)

    Article  Google Scholar 

  26. W.J. Qin, J. Sun, J. Yang, X.W. Du, Mater. Chem. Phys. 130, 425 (2011)

    Article  Google Scholar 

  27. S.B. Zhang, S.H. Wei, A. Zunger, Phys. Rev. B 63, 075205 (2001)

    Article  Google Scholar 

  28. L.H. Ye, A.J. Freeman, B. Delley, Phys. Rev. B 73, 033203 (2006)

    Article  Google Scholar 

  29. P. Cao, D.X. Zhao, D.Z. Shen, J.Y. Zhang, Z.Z. Zhang, Y. Bai, Appl. Surf. Sci. 255, 3639 (2009)

    Article  Google Scholar 

  30. T.S. Herng, S.P. Lau, S.F. Yu, J.S. Chen, K.S. Teng, J. Magn. Magn. Mater. 315, 107 (2007)

    Article  Google Scholar 

  31. P. Thakur, V. Bisogni, J.C. Cezar, N.B. Brookes, G. Ghiringhelli, S. Gautam, K.H. Chae, M. Subramanian, R. Jayavel, K. Asokan, J. Appl. Phys. 107, 103915 (2011)

    Article  Google Scholar 

  32. G.J. Huang, J.B. Wang, X.L. Zhong, G.C. Zhou, H.L. Yan, J. Mater. Sci. 42, 6464 (2007)

    Article  Google Scholar 

  33. T.S. Herng, S.P. Lau, S.F. Yu, H.Y. Yang, X.H. Ji, J.S. Chen, N. Yasui, H. Inaba, J. Appl. Phys. 99, 086101 (2006)

    Article  Google Scholar 

  34. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, S.N. Heo, B.H. Koo, Acta Mater. 60, 5190 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grant Commission (UGC), New Delhi, India, for financial support under the Project [File No.: 41-968/2012 (SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangeetha, R., Muthukumaran, S. & Ashokkumar, M. Optimization of precursor based on optical, structural and magnetic properties of Cu-doped ZnO nanoparticles. J Mater Sci: Mater Electron 26, 8108–8117 (2015). https://doi.org/10.1007/s10854-015-3470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3470-9

Keywords

Navigation