Skip to main content
Log in

Dielectric and photoluminescence properties of Nd and Ga codoped-BaTiO3, prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Neodymium and gallium codoped barium titanate (Ba1−x−yNdxGayTiO3, x = 0.03, 0.05, 0.07, 0.1 and y = 0.03) were prepared by sol–gel method in order to investigate its dielectric and photoluminescence properties. The structure and morphology of Ba1−x−yNdxGayTiO3 powders calcined at 1100 °C and sintered ceramics by spark plasma sintering (SPS) technique were analyzed using X-ray diffraction and scanning electron microscope, respectively. The photoluminescence and dielectric properties of Nd doped Ba0.97Ga0.03TiO3, (y = 0.03) as a function of Nd3+ concentration and sintering temperature were also investigated. The influence of Ga3+ and Nd3+ dopants on the crystalline phases, sintering process by SPS and macroscopic properties of Ba1−x−yNdxGayTiO3 ceramics was analyzed, as well as a weak hot emission from the 4F5/2 level. The sintered ceramics showed high dielectric constant and moderate dielectric losses. The highest value of the permittivity obtained for Ba1−x−yNdxGayTiO3 ceramics was ɛr = 5890 at room temperature, 1 kHz and x = y = 0.03. This study shown that Nd3+ decreases the density of the pellets, increases the dielectric losses and decreases the dielectric constant of Ba0.97Ga0.03TiO3 ceramics. Therefore, the values of dielectric properties, at room temperature, of BaTiO3 doped with 3 at.% Ga and ≤7 at.% Nd are higher than those of undoped BaTiO3 ceramic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Staedler, T. Magouroux, H. Rachid, C. Joulaud, J. Extermann, S. Schwung, S. Passemard, C. Kasparian, G. Clarke, M. Gerrmann et al., ACS Nano 6, 2542–2549 (2012)

    Article  Google Scholar 

  2. C.M. Krowne, S.W. Kirchoefer, W. Chang, J.M. Pond, L.M.B. Alldredge, Nano Lett. 11, 988–992 (2011)

    Article  Google Scholar 

  3. S.B. Qin, D. Liu, Z.Y. Zuo, Y.H. Sang, X.L. Zhang, F.F. Zheng, H. Liu, X.G. Xu, J. Phys. Chem. Lett. 1, 238–241 (2010)

    Article  Google Scholar 

  4. C.Y. Fang, C.A. Randal, M.T. Lanagan, D.K. Agrawal, J. Electroceram. 22, 125–130 (2009)

    Article  Google Scholar 

  5. V. Swaminathan, S.S. Pramana, T.J. White, L. Chen, R. Chukka, Appl. Mater. Interf. 2, 3037–3042 (2010)

    Article  Google Scholar 

  6. L. Huang, Z. Chen, J. Wilson, S. Banerjee, R.D. Robinson, I.P. Herman, R. Laibowitz, S. O’Brien, J. Appl. Phys. 100, 034316 (2006)

    Article  Google Scholar 

  7. T. Takagahara, K. Takeda, Phys. Rev. B 46, 15578–15581 (1992)

    Article  Google Scholar 

  8. J. Yu, J. Sun, J. Chu, D. Tang, Appl. Phys. Lett. 77, 2807–2810 (2000)

    Article  Google Scholar 

  9. A. Mazur, O.F. Schirmer, S. Mendricks, Appl. Phys. Lett. 70, 2395–2397 (1997)

    Article  Google Scholar 

  10. P. Barik, T.K. Kundu, Nanosyst. Phys Chem. Math. 4, 269–275 (2013)

    Google Scholar 

  11. Z. Fu, B.K. Moon, H.K. Yang, J.H. Jeong, J. Phys. Chem. C 112, 5724–5728 (2008)

    Article  Google Scholar 

  12. R. Pazik, R.J. Wiglusz, W. Strek, Mater. Res. Bull. 44, 1328–1333 (2009)

    Article  Google Scholar 

  13. G.C. Yi, B.A. Block, G.M. Ford, B.W. Wessels, Appl. Phys. Lett. 73, 1625–1627 (1998)

    Article  Google Scholar 

  14. M.A. Garcia, R.F.J. Carrillo, H.M. Garcia, G.O. Barbosa, N.A. Meneses, S.S. Palomares, V.A. Flores, Mater. Trans. 50, 1850–1854 (2009)

    Article  Google Scholar 

  15. P.M.M. Vijatovic, J.D. Bobic, T. Ramoska, J. Banys, B.D. Stojanovic, Mater. Charact. 62, 1000–1006 (2011)

    Article  Google Scholar 

  16. N. Maso, H. Beltran, E. Cordoncillo, F.A. Arenas, P. Escribano, D.C. Sinclair, A.R. West, J. Mater. Chem. 16, 3114–3119 (2006)

    Article  Google Scholar 

  17. B. Sarkar, K. Chakrabarti, K. Das, S.K. De, Phys. D: Appl. Phys. 45, 505304–505313 (2012)

    Article  Google Scholar 

  18. L. Ben, D.C. Sinclair, Appl. Phys. Lett. 98, 092907 (2011)

    Article  Google Scholar 

  19. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Mater. Chem. Phys. 109, 475–481 (2008)

    Article  Google Scholar 

  20. Y. Li, X. Yao, L. Zhang, Ceram. Int. 30, 1325–1328 (2004)

    Article  Google Scholar 

  21. T. Hashishin, E. Sato, S. Umeki, K. Kojima, J. Tamaki, Mater. Sci. Eng. 18, 092031 (2011)

    Google Scholar 

  22. R. Pazik, D. Hreniak, W. Strek, Mater. Sci-Poland 22, 219–225 (2004)

    Google Scholar 

  23. W. Zhang, L. Cao, W. Wang, G. Su, W. Liu, Ceram-Silikaty 57, 146–150 (2013)

    Google Scholar 

  24. J.L. Jou, C.M. Lei, Y.W. Xu, W.C.V. Yeh, Chin. J. Phys. 50, 926–931 (2012)

    Google Scholar 

  25. M.J. Wang, H. Yang, Q.L. Zhang, Z.S. Lin, Z.S. Zhang, D. Yu, L. Hu, Mater. Res. Bull. 60, 485–491 (2014)

    Article  Google Scholar 

  26. D. Gulwade, P. Gopalan, Physica B 404, 1799–1805 (2009)

    Article  Google Scholar 

  27. H. Natsui, C. Moriyoshi, F. Yoshida, Y. Kuroiwa, T. Ishii, O. Odawara, J. Yu, S. Yoda, Appl. Phys. Lett. 98, 132909–132911 (2011)

    Article  Google Scholar 

  28. M.J. Wang, H. Yang, Q.L. Zhang, L. Hu, D. Yu, Z.S. Lin, Z.S. Zhang, J. Mater. Sci.: Mater. Electron. 25, 2905–2912 (2014)

    Google Scholar 

  29. Q. Zhou, C.R. Zhou, H.B. Yang, C.L. Yuan, G.H. Chen, L. Cao, Q.L. Fan, J. Mater. Sci.: Mater. Electron. 25, 196–201 (2014)

    Google Scholar 

  30. S.Y. Kang, Y.H. Kim, J. Moon, K.S. Suh, D.J. Lee, S.G. Kang, Jpn. J. Appl. Phys. 48, 052301 (2009)

    Article  Google Scholar 

  31. K. Sadhana, T. Krishnaveni, K. Praveena, S. Bharadwaj, S.R. Murthy, Scripta Mater. 59, 495–498 (2008)

    Article  Google Scholar 

  32. P. Kuruva, U.M.S. Rajaputra, S. Sanyadanam, R.M. Sarabu, Turk. J. Phys. 37, 312–321 (2013)

    Article  Google Scholar 

  33. H. Maiwa, Jpn. J. Appl. Phys. 47, 7646–7649 (2008)

    Article  Google Scholar 

  34. Z. Chen, F. Zhou, M. Liu, G. Wu, X. Pan, Ferroelectrics 123, 61–67 (1991)

    Article  Google Scholar 

  35. W. Luan, L. Gao, H. Kawaoka, T. Sekino, K. Niihara, Ceram. Int. 30, 405–410 (2004)

    Article  Google Scholar 

  36. M.S. Spotz, D.J. Skamser, D.L. Johnson, J. Am. Ceram. Soc. 78, 1041–1048 (1995)

    Article  Google Scholar 

  37. D. Clark, W.H. Sutton, Annu. Rev. Mater. Sci. 26, 299–331 (1996)

    Article  Google Scholar 

  38. D.K. Agrawal, Solid State Mat. Sci. 3, 480–486 (1998)

    Article  Google Scholar 

  39. J.G.P. Binner, B. Vaidhyanathan, Key Eng. Mat. 264–268, 725–730 (2004)

    Article  Google Scholar 

  40. Z. Valdez-Nava, S. Guillemet-Fritsch, C. Tenailleau, T. Lebey, B. Durand, J.Y. Chane-Ching, J. Electroceram. 22, 238–244 (2009)

    Article  Google Scholar 

  41. V.I. Petkov, V. Buscaglia, M.T. Buscaglia, Z. Zhao, Y. Ren, Phys. Rev. B: Condens. Matter. Mater. Phys. 78, 054107 (2008)

    Article  Google Scholar 

  42. H.M. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  Google Scholar 

  43. D. Gulwade, P. Gopalan, Phys. B 404, 1799–1805 (2009)

    Article  Google Scholar 

  44. N. Thomas, J. Phys. Chem. Solids 51, 1419 (1990)

    Article  Google Scholar 

  45. W.T. Carnall, G.L. Goodman, K. Rajnak, R.S. Rana, J. Chem. Phys. 90, 3443–3457 (1989)

    Article  Google Scholar 

  46. A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, W. Strek, Opt. Mater. 33, 1481–1486 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Author Catalina Andreea Vasilescu gratefully acknowledges the financial support from the Sectorial Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132397 (ExcelDOC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalina Andreea Vasilescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cernea, M., Vasilescu, C.A., Secu, M. et al. Dielectric and photoluminescence properties of Nd and Ga codoped-BaTiO3, prepared by sol–gel method. J Mater Sci: Mater Electron 27, 11371–11378 (2016). https://doi.org/10.1007/s10854-016-5262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5262-2

Keywords

Navigation