Skip to main content
Log in

Production and morphological characterization of low resistance polyimide/silver nanowire nanocomposites: potential application in nanoconductive adhesives

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new generation of polyimide (PI)/silver nanowires nanocomposites were prepared by a solution mixing method with different contents of prepared silver nanowires. The structural and properties of pure PI and PI/Ag nanocomposites were studied by several techniques such as fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), electrochemical impedance spectroscopy, and thermal analyses. FT-IR and 1H-NMR spectra confirmed the success in preparation of PI sample. The FE-SEM and AFM analyses show the good dispersion of silver nanostructure in the PI matrix. The XRD pattern shows the presence of crystalline nature of inorganic silver nanowires in the organic amorphous PI matrix. The thermal and impedance spectroscopy analyses results reveal that, with increases in the content of silver in PI matrix up to the 2 vol%, the conductivity, and thermally stability factors of samples were increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.E. Cassidy, Thermally Stable Polymers (Marcel Dekker, New York, 1980), pp. 15–56

    Google Scholar 

  2. D. Wilson, H.D. Stenzenberger, P.M. Hergenrother, Polyimides (Blackie, London, 1990), pp. 34–46

    Book  Google Scholar 

  3. M.I. Bessonov, V.A. Zubkov, Polyamic Acids and Polyimides: Synthesis, Transformations, and Structure (CRC Press, Boca Raton, 1993), pp. 201–218

    Google Scholar 

  4. V. Mittal, Thermally Stable and Flame Retardant Polymer Nanocomposites (Cambridge University Press, New York, 2011), pp. 121–138

    Book  Google Scholar 

  5. J. Njuguna, Structural Nanocomposites: Perspectives for Future Applications (Springer, Heidelberg, 2013), pp. 173–184

    Book  Google Scholar 

  6. B.N. Nguyen, E. Cudjoe, A. Douglas, D. Scheiman, L. McCorkle, M.A.B. Meador, S.J. Rowan, Macromolecules 49, 1692 (2016)

    Article  Google Scholar 

  7. S.-K. Kim, T. Liu, X. Wang, A.C.S. Appl, Mater. Interfaces 37, 20865 (2015)

    Article  Google Scholar 

  8. Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, F. Xu, J. Li, Y. Yuan, X. He, Y. Li, ACS Nano 9, 8933 (2015)

    Article  Google Scholar 

  9. H. Zhou, W. Yu, C. Qu, C. Liu, D. Wang, J. Mater. Sci.: Mater. Electron. 26, 9789 (2015)

    Google Scholar 

  10. K. Faghihi, M. Hajibeygi, J. Saudi Chem. Soc. 17, 419 (2013)

    Article  Google Scholar 

  11. N.V. Kamanina, S.V. Serov, N.A. Shurpo, S.V. Likhomanova, D.N. Timonin, P.V. Kuzhakov, N.N. Rozhkova, I.V. Kityk, K.J. Plucinski, D.P. Uskokovic, J. Mater. Sci.: Mater. Electron. 23, 1538 (2012)

    Google Scholar 

  12. A. Ahmad, H. Wu, Y. Guo, Q. Meng, Y. Meng, K. Lu, L. Liu, Z. Wei, RSC Adv. 6, 33287 (2016)

    Article  Google Scholar 

  13. P. Knauth, J. Schoonman, Nanocomposites: Ionic Conducting Materials and Structural Spectroscopies (Springer, New York, 2008)

    Google Scholar 

  14. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, ACS Nano 8, 5154 (2014)

    Article  Google Scholar 

  15. W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, J. Mater. Sci.: Mater. Electron. 24, 628 (2013)

    Google Scholar 

  16. D.-G. Kim, J. Kim, S.-B. Jung, Y.-S. Kim, J.-W. Kim, Appl. Surf. Sci. 380, 223 (2016)

    Article  Google Scholar 

  17. C.-Y. Lin, D.-H. Kuo, W.-C. Chen, M.-W. Ma, G.-S. Liou, Org. Electron. 13, 2469 (2012)

    Article  Google Scholar 

  18. Y. Kim, J.-W. Kim, Appl. Surf. Sci. 363, 1 (2016)

    Article  Google Scholar 

  19. Y. Tang, W. He, S. Wang, Z. Tao, L. Cheng, J. Mater. Sci.: Mater. Electron. 25, 2929 (2014)

    Google Scholar 

  20. S. Wang, Y. Tian, S. Ding, Y. Huang, Mater. Lett. 172, 175 (2016)

    Article  Google Scholar 

  21. A. Jeevika, D.R. Shankaran, J. Colloid Interface Sci. 458, 155 (2015)

    Article  Google Scholar 

  22. Y. Mao, C. Wang, H. Yang, Mater. Lett. 142, 102 (2015)

    Article  Google Scholar 

  23. K. Jia, H. Shou, P. Wang, X. Zhou, X. Liu, Appl. Surf. Sci. 377, 180 (2016)

    Article  Google Scholar 

  24. B. Rezaei, S. Damiri, Talanta 83, 197 (2010)

    Article  Google Scholar 

  25. J.-Y. Lin, Y.-L. Hsueh, J.-J. Huang, J.-R. Wu, Thin Solid Films 584, 243 (2015)

    Article  Google Scholar 

  26. H. Wang, D. Zhu, W. Zhou, F. Luo, Ind. Eng. Chem. Res. 54, 6589 (2015)

    Article  Google Scholar 

  27. N. Atar, E. Grossman, I. Gouzman, A. Bolker, V.J. Murray, B.C. Marshall, M. Qian, T.K. Minton, Y. Hanein, ACS Appl. Mater. Interfaces 7, 12047 (2015)

    Article  Google Scholar 

  28. J. Lim, H. Yeo, M. Goh, B.C. Ku, S.G. Kim, H.S. Lee, B. Park, N.H. You, Chem. Mater. 27, 2040 (2015)

    Article  Google Scholar 

  29. M. Yoonessi, J.R. Gaier, J.A. Peck, M.A. Meador, Carbon 84, 375 (2015)

    Article  Google Scholar 

  30. A. Gomez-Acosta, A. Manzano-Ramirez, E.J. Lopez-Naranjo, L.M. Apatiga, R. Herrera-Basurto, E.M. Rivera-Munoz, Mater. Lett. 138, 167 (2015)

    Article  Google Scholar 

  31. S. Coskun, B. Aksoy, H.E. Unalan, Cryst. Growth Des. 11, 4963 (2011)

    Article  Google Scholar 

  32. Y. Sun, B. Mayers, T. Herricks, Y. Xia, Nano Lett. 3, 955 (2003)

    Article  Google Scholar 

  33. S. Mallakpour, M. Hatami, Des. Monomers Polym. 14, 461 (2011)

    Article  Google Scholar 

  34. S. Yazdani, M. Hatami, S.M. Vahdat, Turk. J. Chem. 38, 388 (2014)

    Article  Google Scholar 

  35. P. Eaton, P. West, Atomic Force Microscopy (Oxford University Press Inc., New York, 2010), pp. 25–76

    Book  Google Scholar 

  36. X. Xue, L.M. Phinney, A.A. Polycarpou, Microsys. Technol. 14, 17 (2008)

    Article  Google Scholar 

  37. Necas, D., Klapetek, P.: Gwyddion—free SPM (AFM,SNOM/NSOM, STM, MFM, …) data analysis software. http://gwyddion.net/. Accessed 01 Feb 2016

  38. D. Zhang, L. Qi, J. Yang, J. Ma, H. Cheng, L. Huang, Chem. Mater. 16, 872 (2004)

    Article  Google Scholar 

  39. D. Sotta, J. Bernard, V. Sauvant-Moynot, Prog. Org. Coat. 69, 210 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledge Iran National Science Foundation (INSF) for support of this work under Project No. 91054935 and University of Bonab, Bonab, and also Khoramshahr Marine Science and Technology University, Khoramshahr, Iran for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hatami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatami, M. Production and morphological characterization of low resistance polyimide/silver nanowire nanocomposites: potential application in nanoconductive adhesives. J Mater Sci: Mater Electron 28, 3897–3908 (2017). https://doi.org/10.1007/s10854-016-6003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6003-2

Keywords

Navigation