Skip to main content
Log in

Effect of Na-substitution on magnetoresistance and flux pinning energy of Bi-2212 ceramics prepared via hot-forging process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, polymerization method with polyethyleneimine, followed by hot-forging process was used to synthesize bulk textured Bi2Sr2Ca1−xNaxCu2Oy (x = 0.0, 0.05, 0.075 0.1, and 0.15) ceramics. Magnetoresistance performance of samples was studied by change of flux pinning mechanism. The effect of Na-substitution on the magnetoresistance, flux pinning energy, irreversibility field, upper critical magnetic field and coherence length was evaluated in the framework of thermally activated flux flow model. A resistivity transition broadening under various magnetic fields (0–5 T) was analyzed. By using the resistivity data, the upper critical field and the coherence length at T = 0 K were deduced. For \({\text{H}} \bot c~,\) HC2(0) and ξ(0) values were calculated as 31, 31.3, 36.7, 38.3, 35.1 T and 33.1, 32.4, 30.0, 29.3, 30.6 Å, for 0.0, 0.05, 0.075, 0.10, and 0.15 Na-doped samples, respectively. For \({\text{H}}~||c,\) HC2(0) and ξ(0) values were 95 and 112.3 T and 18.6 and 17.1 Å, for the samples of Na0 and Na2, respectively. In particular, the flux pinning or activation energies of Bi2Sr2Ca1−xNaxCu2O8+y where x = 0.10 were determined to be 0.19 eV for 0 T and 0.06 eV for 5 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27, L 209 (1988)

    Article  CAS  Google Scholar 

  2. C. Michel, M. Hervieu, M.M. Borel, A. Grandin, F. Desland, J. Provost, B. Raveau, Z. Phys. B 68, 421 (1987)

    Article  CAS  Google Scholar 

  3. H.G. von Schnering, L. Walz, M. Schwarz, W. Becker, M. Hartweg, T. Popp, B. Hettich, P. Müller, G. Kämpf, Angew. Chem. Int. Ed. Engl. 27, 574–576 (1988)

    Article  Google Scholar 

  4. A. Sotelo, G.F. De la Fuente, F. Lera, D. Beltrán, F. Sapiña, R. Ibáñez, A. Beltrán, M.R. Bermejo, Chem. Mater. 5, 851 (1993)

    Article  CAS  Google Scholar 

  5. M.T. Ruiz, G.F. De la Fuente, A. Badía, J. Blasco, M. Castro, A. Sotelo, A. Larrea, F. Lera, C. Rillo, R. Navarro, J. Mater. Res. 8, 1268 (1993)

    Article  CAS  Google Scholar 

  6. G.F. de la Fuente, A. Sotelo, Y. Huang, M.T. Ruiz, A. Badia, L.A. Angurel, F. Lera, R. Navarro, C. Rillo, R. Ibañez, D. Beltran, F. Sapiña, A. Beltran, Physica C 185, 509 (1991)

    Article  Google Scholar 

  7. A. Sotelo, Sh Rasekh, M.A. Madre, J.C. Diez, J. Supercond. Nov. Magn. 24, 19 (2011)

    Article  CAS  Google Scholar 

  8. B. Ozcelik, M. Gursul, A. Sotelo, M.A. Madre, J. Mater. Sci. Mater. Electron. 26, 441 (2015)

    Article  CAS  Google Scholar 

  9. B. Ozcelik, M. Gursul, A. Sotelo, M.A. Madre, J. Mater. Sci. Mater. Electron. 26, 2830 (2015)

    Article  CAS  Google Scholar 

  10. A. Sotelo, B. Ozcelik, H. Amaveda, A. Bruned, M.A. Madre, Ceram. Int. 41, 14276 (2015)

    Article  CAS  Google Scholar 

  11. B. Özçelik, O. Nane, A. Sotelo, M.A. Madre, Ceram. Int. 42, 3418 (2016)

    Article  Google Scholar 

  12. O. Nane, B. Özçelik, H. Amaveda, A. Sotelo, M.A. Madre, Ceram. Int. 42, 8473 (2016)

    Article  CAS  Google Scholar 

  13. O. Nane, B. Özçelik, A. Sotelo, M.A. Madre, J. Eur. Ceram. Soc. 37, 1007 (2017)

    Article  CAS  Google Scholar 

  14. B. Özçelik, O. Nane, A. Sotelo, H. Amaveda, M.A. Madre, J. Mater. Sci. Mater. Electron. 28, 6278 (2017)

    Article  Google Scholar 

  15. J.M. Huijbregtse, B. Dam, R.C.F. van der Geest, F.C. Klaassen, R. Elberse, J.H. Rector, R. Griessen, Phys. Rev. B 62, 1338 (2000)

    Article  CAS  Google Scholar 

  16. J. Albrecht, Phys. Rev. B 68, 054508 (2003)

    Article  Google Scholar 

  17. M. Hawley, I.D. Raistrick, J.G. Beery, R.J. Houlton, Science 251, 1587 (1991)

    Article  CAS  Google Scholar 

  18. C. Gerber, D. Anselmetti, J.G. Bednorz, J. Mannhart, D.G. Schlom, Nature 350, 279 (1991)

    Article  Google Scholar 

  19. J. Trastoy, V. Rouco, C. Ulysse, R. Bernard, G. Faini, J. Lesueur, J. Briatico, J.E. Villegas, Physica C 506, 195 (2014)

    Article  CAS  Google Scholar 

  20. M. Shahbazi, X.L. Wang, S.R. Ghorbani, M. Ionescu, O.V. Shcherbakova, F.S. Wells, A.V. Pan, S.X. Dou, K.Y. Choi, Supercond. Sci. Technol. 26, 095014 (2013)

    Article  Google Scholar 

  21. M. Eisterer, M. Zehetmayer, H.W. Weber, J. Jiang, J.D. Weiss, A. Yamamoto, E.E. Hellstrom, Supercond. Sci. Technol. 22, 095011 (2009)

    Article  Google Scholar 

  22. P.W. Anderson, Phys. Rev. Lett. 9, 309 (1962)

    Article  Google Scholar 

  23. M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988)

    Article  CAS  Google Scholar 

  24. T.T. Palstra, B. Batlogg, R.B. Van Dover, L.F. Scheemeyer, J.V. Waszczak, Appl. Phys. Lett. 54, 763 (1989)

    Article  CAS  Google Scholar 

  25. M.R. Mohammadizadeh, M. Akvahan, Physica C 390, 134 (2003)

    Article  CAS  Google Scholar 

  26. T.T. Palstra, B. Batlogg, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988)

    Article  CAS  Google Scholar 

  27. A.P. Malozemoff, T.K. Worthington, E. Zeldov, N.C. Yeh, M.W. McElfresh, in Strong Correlation and Superconductivity, ed. by H. Fukuyama, S. Maekawa, A.P. Malozemoff, vol. 89 (Springer, Berlin, 1989)

    Chapter  Google Scholar 

  28. R. Griessen, Phys. Rev. Lett. 64, 1674 (1990)

    Article  CAS  Google Scholar 

  29. R.C. Ma, W.H. Song, X.B. Zhu, L. Zhang, S.M. Liu, J. Fang, J.J. Du, Y.P. Sun, C.S. Li, Z.M. Yu, Y. Feng, P.X. Zhang, Physica C 405, 34 (2004)

    Article  CAS  Google Scholar 

  30. V. Garnier, R. Caillard, A. Sotelo, G. Desgardin, Physica C 319, 197 (1999)

    Article  CAS  Google Scholar 

  31. A. Cruz García, J.R. Fernández Gamboa, E. Altshuler, R.F. Jardim, O. Vazquez Robaina, P. Muné, J. Mater. Sci. Mater. Electron. 29/8, 6188 (2018)

    Article  Google Scholar 

  32. S.-X. Dou, W.-M. Wu, H.-K. Liu, C.C. Sorrell, Physica C 185–189, 811 (1991)

    Article  Google Scholar 

  33. Y. Yu, X. Jin, D.X. Cai, X.X. Yao, C. Hu, K.Y. Ding, D. Feng, Phys. Status Solidi A 146, K33–K36 (1994)

    Article  CAS  Google Scholar 

  34. A. Sotelo, J. I.Peña, L.A. Angurel, C. Diez, M.T. Ruiz, G.F. de la Fuente, R. Navarro, J. Mater. Sci. 32, 5679 (1997)

    Article  CAS  Google Scholar 

  35. N.N. Eremin, L.I. Leonyuk, V.S. Urusov, J. Solid State Chem. 158, 162 (2001)

    Article  CAS  Google Scholar 

  36. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liv, N.E. Floer, Physica C 176, 95 (1991)

    Article  CAS  Google Scholar 

  37. S. Satyavathi, K. Nanda Kishore, V. Hari Babu, O. Pena, Supercond. Sci. Technol. 9, 93 (1996)

    Article  CAS  Google Scholar 

  38. M.C. Sekhar, S.V. Suryanarayana, Physica C 415, 209 (2004)

    Article  CAS  Google Scholar 

  39. G. Beni, Phys. Rev. B10, 2187 (1974)

    Google Scholar 

  40. P.M. Chaikin, G. Beni, Phys. Rev. B 46, 647 (1976)

    Article  Google Scholar 

  41. J.R. Cooper, B. Alavi, L.W. Zhow, W.P. Boyermann, G. Gruner, Phys. Rev. B 35, 8794 (1987)

    Article  CAS  Google Scholar 

  42. J.J. Kim, H. Lee, J. Chung, H.J. Shin, H.J. Lee, J.K. Ku, Phys. Rev. B 43, 2962 (1991)

    Article  CAS  Google Scholar 

  43. M.M. Barakat, K. Habanjar, J. Adv. Ceram. 6(2), 100 (2017)

    Article  CAS  Google Scholar 

  44. M. Dogruer, Y. Zalaoglu, A. Varilci, C. Terzioglu, G. Yildirim, O. Ozturk, J. Supercond. Nov. Magn. 25, 961 (2012)

    Article  CAS  Google Scholar 

  45. H. Khosroabadi, V. Daadmehr, M. Akhavan, Physica C 384, 169 (2003)

    Article  CAS  Google Scholar 

  46. N.H. Mohammed, A.I. Abou-Aly, R. Awad, M. Rekaby, Supercond. Sci. Technol. 19, 1104 (2006)

    Article  CAS  Google Scholar 

  47. N.R. Werthamer, E. Helfand, P.C. Hohenberg, Phys. Rev. 147, 295 (1966)

    Article  CAS  Google Scholar 

  48. H.C. Yang, L.M. Wang, Phys. Rev B 59, 13 (1999)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Fund of Çukurova University, Adana, Turkey, under Grant Contracts No. FBA-2014-3500. M.A. Madre, and A. Sotelo wish to thank the Gobierno de Aragón-FEDER (Research Group T 54-17 R), and the Spanish MINECO-FEDER (MAT2017-82183-C3-1-R) for financial support. Authors would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Özçelik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özçelik, B., Gürsul, M., Nane, F.K. et al. Effect of Na-substitution on magnetoresistance and flux pinning energy of Bi-2212 ceramics prepared via hot-forging process. J Mater Sci: Mater Electron 29, 19147–19154 (2018). https://doi.org/10.1007/s10854-018-0041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0041-x

Navigation