Skip to main content
Log in

Germanium oxide glass based metal-dielectric nanocomposites: fabrication and optical characterization: a review of new developments

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We review recent experimental results with germanate glasses containing rare-earth ions (RE) and silver nanoparticles (Ag-NPs) nucleated by appropriate heat-treatment of samples. In one study, the photoluminescence (PL) due to an infrared-to-visible frequency upconversion (UC) process was investigated in Bi2O3–GeO2 (BGO) glasses co-doped with ytterbium (Yb3+) and erbium (Er3+) ions when low concentration of AgNO3 was added to the starting glass composition. By exciting the samples at 980 nm, in resonance with the Yb3+ transition, we investigated the influence of the Ag-NPs on the UC process. The Er3+ PL was enhanced, up to 100%, due to the increased local-field sensed by the RE and to the efficient Yb3+ → Er3+ energy-transfer. In another set of experiments, we studied the behavior of BGO glasses containing thulium ions (Tm3+) and Ag-NPs. The role of energy-transfer from bismuth centers to Tm3+ was investigated. PL and relative gain enhancements of ≈ 56% and 500%, respectively, were observed due to the influence of Ag-NPs. Using a pump laser operating at 808 nm (6 W) and a probe laser at 1470 nm (0.6 mW) the relative gain measured at 1470 nm was 4.5 dB/cm. The results from the two sets of experiments indicate that Yb3+/Er3+ co-doped BGO glass with Ag-NPs is an efficient upconverter and Tm3+ doped BGO glass with Ag-NPs can be used as efficient optical amplifier in the short-wave infrared region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [15]. Copyright 2018 Elsevier (Color figure online)

Fig. 2

Reproduced with permission from Ref. [15]. Copyright 2018 Elsevier

Fig. 3

Adapted from Ref. [15]. Copyright 2018 Elsevier (Color figure online)

Fig. 4

Adapted with permission from Ref. [31]. Copyright 2018 Elsevier

Fig. 5

Reproduced with permission from Ref. [31]. Copyright 2018 Elsevier

Fig. 6

Reproduced with permission from Ref. [31]. Copyright 2018 Elsevier

Fig. 7
Fig. 8

Reproduced with permission from Ref. [31]. Copyright 2018 Elsevier

Similar content being viewed by others

References

  1. C. B. de Araújo, L.R.P. Kassab, In Glass Nanocomposites—Synthesis, Properties and Applications, ed. by B. Karmakar, K. Radermann, A.L. Stepanov. Micro & Nano Technologies Series, Chapter 5 (Elsevier, Amsterdam, 2016) pp. 131–144

  2. M.E. Camilo, T.A.A. Assumpção, D.M. da Silva, D.S. da Silva, L.R.P. Kassab, C.B. de Araújo, Appl. Phys. B: Lasers and Optics 113, 153507 (2013)

    Article  Google Scholar 

  3. J.M.P. Almeida, D.S. da Silva, L.R.P. Kassab, S.C. Zilio, C.R. Mendonça, L. de Boni, Opt. Mater. 36, 829 (2014)

    Article  CAS  Google Scholar 

  4. L. De Boni, E.C. Barbano, T.A. de Assumpção, L. Misoguti, L.R.P. Kassab, S.C. Zilio, Opt. Express 20, 6844 (2012)

    Article  Google Scholar 

  5. T.A.A. Assumpção, M.E. Camilo, M.I. Alayo, D.M. da Silva, L.R.P. Kassab, Opt. Mater. 72, 518 (2017)

    Article  Google Scholar 

  6. F.A. Bomfim, R.C. Rangel, D.M. da Silva, D.O. Carvalho, E.G. Melo, M.I. Alayo, L.R.P. Kassab, Opt. Mater. 86, 433 (2018)

    Article  CAS  Google Scholar 

  7. D.M. da Silva, L.R.P. Kassab, A.L. Siarkowski, C.B. de Araújo, Opt. Express 22, 16424 (2014)

    Article  Google Scholar 

  8. M.E. Camilo, E.O. Silva, L.R.P. Kassab, J.A.M. Garcia, C.B. de Araújo, J. Alloys Compd. 644, 155 (2015)

    Article  CAS  Google Scholar 

  9. L.R.P. Kassab, D.M. da Silva, J.A.M. Garcia, D.S. da Silva, C.B. de Araújo, Opt. Mater. 60, 25 (2016)

    Article  CAS  Google Scholar 

  10. L.R.P. Kassab, D.S. da Silva, R. de Almeida, C.B. de Araújo, Appl. Phys. Lett. 94, 101912 (2009)

    Article  Google Scholar 

  11. D.S. da Silva, L.P. Naranjo, L.R.P. Kassab, C.B. de Araújo, Appl. Phys. B 106, 1015 (2012)

    Article  CAS  Google Scholar 

  12. T.R. Oliveira, E.L. Falcão-Filho, C.B. de Araújo, D.S. da Silva, L.R.P. Kassab, D.M. da Silva, J. Appl. Phys. 114, 073503 (2013)

    Article  Google Scholar 

  13. M.P. Almeida, D.S. da Silva, L.R.P. Kassab, S.C. Zilio, C.R. Mendonça, L. de Boni, Opt. Mater. 36, 829 (2014)

    Article  CAS  Google Scholar 

  14. M.M. Martins, D.S. da Silva, L.R.P. Kassab, S.J.L. Ribeiro, C.B. de Araújo, J. Braz. Chem. Soc. 26, 2520 (2015)

    CAS  Google Scholar 

  15. L.R.P. Kassab, D.K. Kumada, D.M. da Silva, J.A.M. Garcia, J. Non-Cryst, Solids 498, 395 (2018)

    CAS  Google Scholar 

  16. D.M. da Silva, L.R.P. Kassab, S.R. Luthi, C.B. de Araújo, A.S.L. Gomes, M.J.V. Bell, Appl. Phys. Lett. 90, 081913 (2007)

    Article  Google Scholar 

  17. L.R.P. Kassab, F.A. Bomfim, J.R. Martinelli, N.U. Wetter, J.J. Neto, C.B. de Araújo, Appl. Phys. B 94, 239 (2009)

    Article  CAS  Google Scholar 

  18. M.A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, D.W. Hewak, Opt. Express 17, 19345 (2009)

    Article  CAS  Google Scholar 

  19. M. Hughes, T. Suzuki, Y. Ohishi, J. Opt. Soc. Am. B 25, 1380 (2008)

    Article  CAS  Google Scholar 

  20. X.-G. Meng, J.-R. Qiu, M.-Y. Peng, D.-P. Chen, Q.-Z. Zhao, X.-W. Jiang, C.-S. Zhu, Opt. Express 13, 1635 (2005)

    Article  CAS  Google Scholar 

  21. H.T. Sun, J.J. Zhou, J.R. Qiu, Prog. Mater Sci. 64, 1 (2014)

    Article  CAS  Google Scholar 

  22. J. Ren, B. Wu, X. Jiang, H. Dong, H. Zeng, J. Qin, Appl. Phys. B 88, 363 (2007)

    Article  CAS  Google Scholar 

  23. J. Ren, H. Dong, H. Zeng, H. Hu, C. Zhu, J. Qin, IEEE Photonics Technol. Lett. 19, 1395 (2007)

    Article  CAS  Google Scholar 

  24. C.M. Dianov, V.V. Dvoyrin, V.M. Mashinsky, A.A. Umnikvov, M.V. Yaskov, A.N. Guryanov, Quantum Electron. 35, 1083 (2005)

    Article  CAS  Google Scholar 

  25. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, S. Khonton, Appl. Phys. Lett. 90, 261110 (2007)

    Article  Google Scholar 

  26. J. Ruan, G.P. Dong, X.F. Liu, Q. Zhang, D.P. Chen, J.R. Qiu, Opt. Lett. 34, 2486 (2009)

    Article  CAS  Google Scholar 

  27. B. Zhou, H. Lin, B. Chen, E.Y. Pun, Opt. Express 19, 6514 (2011)

    Article  CAS  Google Scholar 

  28. Q. Yan, C. Shen, W. Wang, S. Wang, G. Chen, J. Am. Ceram. Soc. 93, 3539 (2010)

    Article  CAS  Google Scholar 

  29. W.C. Wang, J. Yuan, D.D. Chen, Q. Qian, Q.Y. Zhang, Opt. Mater. Express 5, 1250 (2015)

    Article  Google Scholar 

  30. T.M. Hau, R. Wang, D. Zhou, X. Yu, Z. Song, Z. Yang, Y. Yang, X. He, J. Qiu, J. Lumin. 132, 1353 (2012)

    Article  CAS  Google Scholar 

  31. M.M. Martins, L.R.P. Kassab, D.M. da Silva, C.B. de Araújo, J. Alloys Compd. 772, 58 (2018)

    Article  Google Scholar 

  32. J.A. Jimenez, S. Lysenko, M. Sendova, C.Q. Zhao, Opt. Mater. 46, 88 (2015)

    Article  CAS  Google Scholar 

  33. A. Pillonnet, A. Berthelot, A. Pereira, O. Benamara, S. Derom, G.C. des Francs, A.M. Jurdyc, Appl. Phys. Lett. 100, 153115 (2012)

    Article  Google Scholar 

  34. L.R.P. Kassab, C.B. de Araújo, Metal dielectric nanocomposites based on germanate and tellurite glasses, Chapter 1. In Metal Nanostructures for Photonics, ed. by L.R.P. Kassab, C.B. de Araújo (Elsevier, Amsterdam, 2018), pp. 3–18

  35. M. de Jong, A. Meijerink, R.A. Gordon, Z. Barandiar, L. Seijo, J. Phys. Chem. C 118, 9696 (2014)

    Article  Google Scholar 

  36. V.G. Truong, L. Bigot, A. Lerouge, M. Douay, Appl. Phys. Lett. 92, 041908 (2008)

    Article  Google Scholar 

  37. X. Guo, H.J. Li, L.B. Su, P.S. Yu, H.Y. Zhao, J.F. Liu, J. Xu, Laser Phys. 21, 901 (2011)

    Article  CAS  Google Scholar 

  38. D. Yang, J. Zhang, E.Y.-B. Pun, H. Lin, J. Appl. Phys. 108, 116101 (2010)

    Article  Google Scholar 

  39. D.L. Yang, E.Y.B. Pun, B.J. Chen, H. Lin, J. Opt. Soc. Am. B 26, 357 (2009)

    Article  CAS  Google Scholar 

  40. D.O. Carvalho, L.R.P. Kassab, V.D. Del Cacho, D.M. da Silva, M.I. Alayo, J. Lumin. 203, 135 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the Brazilian Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico - Grant: INCT/CNPq 465.763/2014 (Instituto de Fotônica), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco - FACEPE: APQ 0409-1.05/17, and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) - PROEX 534/2018, grant: 23038.003382/2018-39. This work was performed in the framework of the PRONEX- Center of Excellence Program. The Nanotechnology National Laboratory (LNNano) of the CNPEM-Campinas/Brazil, is also acknowledged for the TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. P. Kassab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassab, L.R.P., Miranda, M.M., Kumada, D.K. et al. Germanium oxide glass based metal-dielectric nanocomposites: fabrication and optical characterization: a review of new developments. J Mater Sci: Mater Electron 30, 16781–16788 (2019). https://doi.org/10.1007/s10854-019-01312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01312-1

Navigation