Skip to main content
Log in

Synthesis and characterization of tunable color upconversion luminescence β-NaGdF4:Yb3+,Er3+ nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The visible green and red upconversion luminescence hexagonal phase Er3+ and Yb3+ doped NaGdF4 nanoparticles of different sizes and morphologies were prepared through high temperature RE3+ ions/oleic acid based organometals and hydrothermal methods, respectively. Their microstructural characterizations were accomplished using X-ray powder diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy analyses. High resolution transmission electron microscopy (HR-TEM) images suggested spherical ultra-small nanocrystals of 6.4 nm for the green luminescence β-NaGdF4:Yb3+,Er3+ and oval/mostly rod shapes particles of ~ 40 nm width and ~ 100 nm length for the red emitting one. The same hexagonal (β-NaGdF4) local structure was confirmed from the selected area electron diffraction (SAED), in corroboration with XRD patterns for both sizes and shapes nanoparticles. Raman scattering result exhibited red Raman shifts of lattice peaks and anomalous line narrowing with decreasing the particle size from ~ 100 to ~ 6.4 nm. The photoluminescence spectroscopy manifested higher intensity 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2 (green emission) transitions of Er3+ ion for ultra-small nanocrystals and dominant 4F9/2 → 4I15/2 (red emission) one for the large size nanorods. The change in size of the particles might be account for the observed tuning in upconversion emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Liu, Chem. Soc. Rev. 44, 1635 (2015)

    Article  CAS  Google Scholar 

  2. J. Zhou, Q. Liu, W. Feng, Y. Sun, F. Li, Chem. Rev. 115, 395 (2015)

    Article  CAS  Google Scholar 

  3. S. Wen, J. Zhou, K. Zheng, A. Bednarkiewicz, X. Liu, D. Jin, Nat. Commun. 9, 2415 (2018)

    Article  Google Scholar 

  4. L.U. Khan, Z.U. Khan, Handbook of material characterization (Springer International Publishing, Cham, 2018), pp. 345–404

    Book  Google Scholar 

  5. Y. Hou, R. Qiao, F. Fang, X. Wang, C. Dong, K. Liu, C. Liu, Z. Liu, H. Lei, F. Wang, M. Gao, ACS Nano 7, 330 (2013)

    Article  CAS  Google Scholar 

  6. L. Marciniak, K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, A. Bednarkiewicz, Nanoscale 8, 5037 (2016)

    Article  CAS  Google Scholar 

  7. X. Huang, J. Mater. Sci. 51, 3490 (2016)

    Article  CAS  Google Scholar 

  8. H. Dong, L.-D. Sun, C.-H. Yan, Chem. Soc. Rev. 44, 1608 (2015)

    Article  CAS  Google Scholar 

  9. B. Zhou, B. Shi, D. Jin, X. Liu, Nat. Nanotechnol. 10, 924 (2015)

    Article  CAS  Google Scholar 

  10. G. Yi, H. Lu, S. Zhao, Y. Ge, W. Yang, D. Chen, L.-H. Guo, Nano Lett. 4, 2191 (2004)

    Article  CAS  Google Scholar 

  11. M. Pedroni, F. Piccinelli, T. Passuello, S. Polizzi, J. Ueda, P. Haro-González, L.M. Maestro, D. Jaque, J. García-Solé, M. Bettinelli, A. Speghini, Cryst. Growth Des. 13, 4906 (2013)

    Article  CAS  Google Scholar 

  12. W. Zheng, P. Huang, D. Tu, E. Ma, H. Zhu, X. Chen, Chem. Soc. Rev. 44, 1379 (2015)

    Article  CAS  Google Scholar 

  13. E.C. Ximendes, U. Rocha, C. Jacinto, K.U. Kumar, D. Bravo, F.J. López, E.M. Rodríguez, J. García-Solé, D. Jaque, Nanoscale 8, 3057 (2016)

    Article  CAS  Google Scholar 

  14. F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Nat. Mater. 10, 968 (2011)

    Article  CAS  Google Scholar 

  15. F. Wang, X. Liu, J. Am. Chem. Soc. 130, 5642 (2008)

    Article  CAS  Google Scholar 

  16. P. Ramasamy, P. Chandra, S.W. Rhee, J. Kim, Nanoscale 5, 8711 (2013)

    Article  CAS  Google Scholar 

  17. S. Han, R. Deng, X. Xie, X. Liu, Angew. Chemie Int. Ed. 53, 11702 (2014)

    Article  CAS  Google Scholar 

  18. R. Arppe, I. Hyppänen, N. Perälä, R. Peltomaa, M. Kaiser, C. Würth, S. Christ, U. Resch-Genger, M. Schäferling, T. Soukka, Nanoscale 7, 11746 (2015)

    Article  CAS  Google Scholar 

  19. F. Wang, J. Wang, X. Liu, Angew. Chemie Int. Ed. 49, 7456 (2010)

    Article  CAS  Google Scholar 

  20. M. Kraft, C. Würth, V. Muhr, T. Hirsch, U. Resch-Genger, Nano Res. 11, 6360 (2018)

    Article  CAS  Google Scholar 

  21. A. Noculak, A. Podhorodecki, Nanotechnology 28, 175706 (2017)

    Article  Google Scholar 

  22. D. Yuan, M.C. Tan, R.E. Riman, G.M. Chow, J. Phys. Chem. C 117, 13297 (2013)

    Article  CAS  Google Scholar 

  23. S. Schietinger, L.S. de Menezes, B. Lauritzen, O. Benson, Nano Lett. 9, 2477 (2009)

    Article  CAS  Google Scholar 

  24. N. Shrivastava, L.U. Khan, J.M. Vargas, C. Ospina, J.A.Q. Coaquira, G. Zoppellaro, H.F. Brito, Y. Javed, D.K. Shukla, M.C.F.C. Felinto, S.K. Sharma, Phys. Chem. Chem. Phys. 19, 18660 (2017)

    Article  CAS  Google Scholar 

  25. A. Herrmann, M. Tylkowski, C. Bocker, C. Rüssel, Chem. Mater. 25(14), 2878–2884 (2013)

    Article  CAS  Google Scholar 

  26. G. Chen, H. Qiu, P.N. Prasad, X. Chen, Chem. Rev. 114(10), 5161–5214 (2014)

    Article  CAS  Google Scholar 

  27. R. Zhou, T. Ma, B. Qiu, X. Li, Mater. Chem. Phys. 194, 23 (2017)

    Article  CAS  Google Scholar 

  28. Y. Guo, J. Wei, Y. Liu, T. Yang, Z. Xu, J. Mater. Sci.: Mater. Electron. 29, 2463 (2018)

    CAS  Google Scholar 

  29. J. Shan, M. Uddi, N. Yao, Y. Ju, Adv. Funct. Mater. 20, 3530 (2010)

    Article  CAS  Google Scholar 

  30. M.M. Lage, R.L. Moreira, F.M. Matinaga, J.-Y. Gesland, Chem. Mater. 17, 4523 (2005)

    Article  CAS  Google Scholar 

  31. C.C. Yang, S. Li, J. Phys. Chem. B 112, 14193 (2008)

    Article  CAS  Google Scholar 

  32. J.J.H.A. van Hest, G.A. Blab, H.C. Gerritsen, C.M. de Donega, A. Meijerink, J. Phys. Chem. C 122, 3985 (2018)

    Article  Google Scholar 

  33. R. Arppe, I. Hyppänen, N. Perälä, R. Peltomaa, M. Kaiser, C. Würth, S. Christ, U. Resch-Genger, M. Schäferling, T. Soukka, Nanoscale 7, 11746 (2015)

    Article  CAS  Google Scholar 

  34. F. Wang, J. Wang, X. Liu, Angew. Chemie Int. Ed. 49, 7456 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) (Grant No. 88882.143477/2017-01), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil). We thank the Sistema Nacional de Laboratórios em Nanotecnologias (SisNANO-MCTIC) for XploRA™ PLUS Confocal Raman Microscope facility and Prof. Wiesław Strȩk research group, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Poland for kindly measurement of upconversion luminescent spectra. The authors also extend gratitude to CNPEM open-facilities (LMN, LME, LAM, LMG, and NBT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. U. Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1910 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, L.U., Khan, Z.U., Rodrigues, R.V. et al. Synthesis and characterization of tunable color upconversion luminescence β-NaGdF4:Yb3+,Er3+ nanoparticles. J Mater Sci: Mater Electron 30, 16856–16863 (2019). https://doi.org/10.1007/s10854-019-01462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01462-2

Navigation