Skip to main content
Log in

Development of highly luminescent PMMA films doped with Eu3+β-diketonate coordinated on ancillary ligand

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, [Eu(tta)3(4-picNO)2] and [Eu(dbm)3(4-picNO)] complexes were incorporated on different concentrations (x = 1, 3, 5, 10 and 15%) in PMMA polymeric matrix (4-picNO: 4-Methylpyridine N-oxide) by the solvent casting method, yielding transparent and highly luminescent polymeric films. These materials were analyzed by X-ray diffraction, scanning electron microscopy and by energy dispersive, ultraviolet–visible spectroscopy, luminescence and vacuum ultraviolet–ultraviolet spectroscopies. The luminescence spectra of doped PMMA films are in agreement with an efficient intramolecular diketonate (tta) ligand-to-europium energy transfer. Furthermore, the values of experimental intensity parameters (Ω2,4) for luminescent polymeric materials were quite similar to those ones for isolated complexes, indicating that there is a homogeneous dispersion of Eu3+ complexes in the polymeric matrix, preserving their chemical and structural features. These behavior were also observed from the CIE diagram that show great similarity between the (x,y) coordinates for the doped PMMA samples compared to the isolated β-diketonate complexes with a reddish color tuning. The photostability investigation of the doped PMMA polymeric films and Eu3+ complexes has been also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.-C.G. Bunzli, On the design of highly luminescent lanthanide complexes. Coord. Chem. Rev. 293–294, 19–47 (2015)

    Article  Google Scholar 

  2. L.D. Carlos, R.A.S. Ferreira, V. de Zea Bermudez, S.J.L. Ribeiro, Lanthanide-containing light-emitting organic–inorganic hybrids: a bet on the future. Adv. Mater. 21(5), 509–534 (2009)

    Article  CAS  Google Scholar 

  3. V.S. Sastri, J.C. Bunzli, J.R. Perumareddi, V.R. Rao, G.V.S. Rayudu, Modern aspects of rare earths and their complexes (Elsevier, Amsterdam, 2003)

    Google Scholar 

  4. B.K. Gupta, D. Haranath, S. Saini, V.N. Singh, V. Shanker, Synthesis and characterization of ultra-fine Y2O3:Eu3+ nanophosphors for luminescent security ink applications. Nanotechnology 21(5), 055607 (2010)

    Article  Google Scholar 

  5. J. Kido, H. Hayase, K. Hongawa, K. Nagai, K. Okuyama, Bright red light-emitting organic electroluminescent devices having an europium complex as an emitter. Appl. Phys. Lett. 65(17), 2124–2126 (1994)

    Article  CAS  Google Scholar 

  6. S. Heer, K. Kompe, H.U. Gudel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16(23–24), 2102–2105 (2004)

    Article  CAS  Google Scholar 

  7. D.-C. Yu, R. Martín-Rodríguez, Q.Y. Zhang, A. Meijerink, F.T. Rabouw, Multi-photon quantum cutting in Gd2O2:Tm3+ to enhance the photo-response of solar cells. Light 4(10), e3441–e3448 (2015)

    Article  Google Scholar 

  8. J.-C. Bunzil, S.V. Eliseeva, Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion. J. Rare Earths 28(6), 824–842 (2010)

    Article  Google Scholar 

  9. A. Nadort, J. Zhaob, E.M. Goldys, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8(27), 13099–13130 (2016)

    Article  CAS  Google Scholar 

  10. O.A. Savchuk, J.J. Carvajal, C.D.S. Brites, L.D. Carlos, M. Aguilo, F. Diaz, Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles. Nanoscale 10(14), 6602–6610 (2018)

    Article  CAS  Google Scholar 

  11. J.-C.G. Bunzil, Lanthanide light for biology and medical diagnosis. J. Lumin. 170, 866–878 (2016)

    Article  Google Scholar 

  12. G.F. Sá, O.L. Malta, C.D. Donega, A.M. Simas, R.L. Longo, P.A. Santa-Cruz, E.F. Silva Jr., Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coord. Chem. Rev. 196(1), 165–195 (2000)

    Article  Google Scholar 

  13. H.F. Brito, O.L. Malta, M.C.F.C. Felinto, E.E.S. Teotonio, In patai series, in The chemistry of metal enolates, ed. by J. Zabicky (John Wiley & Sons Ltd, New Jersey, 2009), pp. 131–184

    Google Scholar 

  14. K. Binnemans, Interpretation of europium (III) spectra. Coord. Chem. Rev. 295, 1–45 (2015)

    Article  CAS  Google Scholar 

  15. P. Leanaerts, K. Driensen, R.V. Deun, K. Binnemans, Covalent coupling of luminescent Tris(2-thenoyltrifluoroacetonato)lanthanide(III) complexes on a merrifield resin. Chem. Mater. 17(8), 2148–2154 (2005)

    Article  Google Scholar 

  16. S. Biju, M.L.P. Reddy, A.H. Cowley, K.V. Vasudevan, 3-Phenyl-4-acyl-5-isoxazolonate complex of Tb3+ doped into poly-bhydroxybutyrate matrix as a promising light-conversion molecular device. J. Mater. Chem. 19(29), 5179 (2009)

    Article  CAS  Google Scholar 

  17. J. Kai, M.C.F.C. Felinto, L.A.O. Nunes, O.L. Malta, H.F. Brito, Intermolecular energy transfer and photostability of luminescence-tuneable multicolour PMMA films doped with lanthanide-β-diketonate complexes. J. Mater. Chem. 21(11), 3796–3802 (2011)

    Article  CAS  Google Scholar 

  18. Q.D. Ling, D.J. Liaw, C. Zhu, D.S.H. Chan, E.T. Kang, K.G. Neoh, Polymer electronic memories: materials, devices and mechanisms. Prog. Polym. Sci. 33(10), 917–978 (2008)

    Article  CAS  Google Scholar 

  19. S. Jana, A.S. Khojin, W.H. Zhong, H. Chen, X. Liu, Q. Huo, Effects of gold nanoparticles and lithium hexafluorophosphate on the electrical conductivity of PMMA. Solid State Ionics 178(19–20), 1180–1186 (2007)

    Article  CAS  Google Scholar 

  20. H. Althues, R. Palkovits, A. Rumplecker, P. Simon, W. Sigle, M. Bredol, U. Kynast, S. Kaskel, Synthesis and characterization of transparent luminescent ZnS:Mn/PMMA nanocomposites. Chem. Mater. 18(4), 1068–1072 (2006)

    Article  CAS  Google Scholar 

  21. S. Li, M.S. Toprak, Y.S. Jo, J. Dobson, D.K. Kim, Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Adv. Mater. 19(24), 4347–4352 (2007)

    Article  CAS  Google Scholar 

  22. S.C. Farmer, T.E. Pattern, Photoluminescent polymer/quantum dot composite nanoparticles. Chem. Mater. 13(11), 3920–3926 (2001)

    Article  CAS  Google Scholar 

  23. J. Gao, C. Lü, X. Lü, Y. Du, APhen-functionalized nanoparticles-polymer fluorescent nanocomposites via ligand exchange and in situ bulk polymerization. J. Mater. Chem. 17(43), 4591–4597 (2007)

    Article  CAS  Google Scholar 

  24. R. Chai, H. Lian, P. Yang, Y. Fan, Z. Hou, X. Kang, J. Lin, In situ preparation and luminescent properties of LaPO4:Ce3+, Tb3+ nanoparticles and transparent LaPO4:Ce3+, Tb3+/PMMA nanocomposite. J. Colloid Interface Sci. 336(1), 46–50 (2009)

    Article  CAS  Google Scholar 

  25. T.A. Kovacs, M.C.F.C. Felinto, T.B. Paolini, B. Ali, L.K.O. Nakamura, E.E.S. Teotonio, H.F. Brito, O.L. Malta, Synthesis and photoluminescence properties of [Eu(dbm)3·PX] and [Eu(acac)3·PX] complexes. J. Lumin. 193, 98–105 (2018)

    Article  CAS  Google Scholar 

  26. C.S. Cunha, M. Köppen, H. Terraschke, G. Friedrichs, O.L. Malta, N. Stock, H.F. Brito, Luminescence tuning and single-phase white light emitters based on rare earth ions doped into a bismuth coordination network. J. Mater. Chem. C 6, 2668–12678 (2018)

    Article  Google Scholar 

  27. O.L. Malta, H.J. Batista, L.D. Carlos, Overlap polarizability of a chemical bond: a scale of covalency and application to lanthanide compounds. Chem. Phys. 282, 21–30 (2002)

    Article  CAS  Google Scholar 

  28. R.T. Moura Jr., O.L. Malta, R.L. Longo, The chemical bond overlap plasmon as a tool for quantifying covalency in solid state materials and its applications to spectroscopy. Int. J. Quantum Chem. 111, 1626–1638 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian Agencies: FAPESP, CAPES, CNPq, CNEN for financial support. Dr Veronica C. Teixeira, Dr Douglas Galante and Mr Leonardo M. Kofukuda (TGM beamline) from the Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials (LNLS and CNPEM), Campinas, SP, Brazil, are gratefully acknowledged for their assistance during vacuum UV-excited luminescence experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. F. C. Felinto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francisco, L.H.C., Felinto, M.C.F.C., Brito, H.F. et al. Development of highly luminescent PMMA films doped with Eu3+β-diketonate coordinated on ancillary ligand. J Mater Sci: Mater Electron 30, 16922–16931 (2019). https://doi.org/10.1007/s10854-019-01639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01639-9

Navigation