Skip to main content
Log in

Prediction of the electrical response of solution-processed thin-film transistors using multifactorial analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin-film transistors (TFTs) with the active layer composed by zinc oxide (ZnO) deposited via spray-pyrolysis present several advantages such as high electrical performance, high optical transmittance in the visible spectrum, low production cost and the ability to cover large areas. Besides the traditional application in electronic/optoelectronic circuits, ZnO TFTs can also be used in sensing devices due to its responsivity to UV-light. In the present work, we performed a bi-level full multifactorial analysis of TFT performance parameters exposed to UV-light. Characterization conditions like UV-light irradiance and time after UV exposure, as well as processing parameters such as annealing temperature were varied simultaneously, allowing the application of analysis of variance (ANOVA) to investigate the effect of these factors on the electrical performance of the devices. Field-effect mobility, threshold voltage, on/off current ratio and the device intrinsic current were among the parameters used as the responses in the factorial analysis. ANOVA was used to determine the ranking of significance of each factor on the different response parameters by the evaluation of the factor effects. Moreover, the results from ANOVA permitted the construction of linear functions used to predict the device responses in the whole range of the experimental conditions, which were confirmed by independent experimental results. The influence of factor interactions and of the linearization of some response parameters was also studied to improve the accuracy of TFT response prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Sou, S. Jung, E. Gili, V. Pecunia, J. Joimel, G. Fichet, H. Sirringhaus, Programmable logic circuits for functional integrated smart plastic systems. Org. Electron. Phys. Mater. Appl. 15(11), 3111–3119 (2014)

    CAS  Google Scholar 

  2. B.N. Pal, P. Trottman, J. Sun, H.E. Katz, Solution-deposited zinc oxide and zinc oxide/pentacene bilayer transistors: high mobility n-channel, ambipolar, and nonvolatile devices. Adv. Funct. Mater. 18(12), 1832–1839 (2008)

    Article  CAS  Google Scholar 

  3. Y.-S. Li, J.-C. He, S.-M. Hsu, C.-C. Lee, D.-Y. Su, F.-Y. Tsai, I.-C. Cheng, Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors. IEEE Electron Device Lett. 37(1), 46–49 (2016)

    Article  CAS  Google Scholar 

  4. A. Liu, G. Liu, H. Zhu, H. Song, B. Shin, E. Fortunato, R. Martins, F. Shan, Water-induced scandium oxide dielectric for low-operating voltage n- and p-type metal-oxide thin-film transistors. Adv. Funct. Mater. 25(46), 7180–7188 (2015)

    Article  CAS  Google Scholar 

  5. J. Zhang, J. Yang, Y. Li, J. Wilson, X. Ma, Q. Xin, A. Song, High performance complementary circuits based on p-SnO and n-IGZO thin-film transistors. Materials (Basel) 10(3), 1–7 (2017)

    Google Scholar 

  6. Min Li, Lei Zhou, Wu Weijing, Jiawei Pang, Jianhua Zou, Junbiao Peng, Xu Miao, Dual gate indium-zinc oxide thin-film transistors based on anodic aluminum oxide gate dielectrics. IEEE Trans. Electron Devices 61(7), 2448–2453 (2014)

    Article  CAS  Google Scholar 

  7. M. Nag, F. De Roose, K. Myny, S. Steudel, J. Genoe, G. Groeseneken, P. Heremans, Characteristics improvement of top-gate self-aligned amorphous indium gallium zinc oxide thin-film transistors using a dual-gate control. J. Soc. Inf. Disp. 25(6), 349–355 (2017)

    Article  CAS  Google Scholar 

  8. E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 25(22), 2945–2986 (2012)

    Article  CAS  Google Scholar 

  9. Y. Kumaresan, Y. Pak, N. Lim, Y. Kim, M.-J. Park, S.-M. Yoon, H.-M. Youn, H. Lee, B.H. Lee, G.Y. Jung, Highly bendable ln-Ga-ZnO thin film transistors by using a thermally stable organic dielectric layer. Sci. Rep. 6(1), 37764 (2016)

    Article  CAS  Google Scholar 

  10. Y. Wang, S.W. Liu, X.W. Sun, J.L. Zhao, G.K.L. Goh, Q.V. Vu, H.Y. Yu, Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. J. Sol-Gel. Sci. Technol. 55(3), 322–327 (2010)

    Article  CAS  Google Scholar 

  11. J.-S. Seo, J.-H. Jeon, Y.H. Hwang, H. Park, M. Ryu, S.-H.K. Park, B.-S. Bae, Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep 3(1), 2085 (2013)

    Article  Google Scholar 

  12. M.C. Gwinner, Y. Vaynzof, K.K. Banger, P.K.H. Ho, R.H. Friend, H. Sirringhaus, Solution-processed zinc oxide as high-performance air-stable electron injector in organic ambipolar light-emitting field-effect transistors. Adv. Funct. Mater. 20(20), 3457–3465 (2010)

    Article  CAS  Google Scholar 

  13. G.H. Kim, H.S. Kim, H.S. Shin, B. Du Ahn, K.H. Kim, H.J. Kim, Inkjet-printed InGaZnO thin film transistor. Thin Solid Films 517(14), 4007–4010 (2009)

    Article  CAS  Google Scholar 

  14. L. Lan, J. Zou, C. Jiang, B. Liu, L. Wang, J. Peng, Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Front. Optoelectron. 10(4), 329–352 (2017)

    Article  Google Scholar 

  15. G. Adamopoulos, A. Bashir, P.H. Wöbkenberg, D.D.C. Bradley, T.D. Anthopoulos, Electronic properties of ZnO field-effect transistors fabricated by spray pyrolysis in ambient air. Appl. Phys. Lett. 95(13), 133507 (2009)

    Article  CAS  Google Scholar 

  16. A. Sanchez-Juarez, A. Tiburcio-Silver, A. Ortiz, E.P. Zironi, J. Rickards, Electrical and optical properties of fluorine-doped ZnO thin films prepared by spray pyrolysis. Thin Solid Films 333(1–2), 196–202 (1998)

    Article  CAS  Google Scholar 

  17. D.E. Martins, G. Gozzi, L.F. Santos, Influence of spray-pyrolysis deposition parameters on the electrical properties of aluminium zinc oxides thin films. MRS Adv. 3(5), 283–289 (2018)

    Article  CAS  Google Scholar 

  18. G. Adamopoulos, S. Thomas, D.D.C. Bradley, M.A. McLachlan, T.D. Anthopoulos, Low-voltage ZnO thin-film transistors based on Y2O3 and Al2O3 high-k dielectrics deposited by spray pyrolysis in air. Appl. Phys. Lett. 98(12), 123503 (2011)

    Article  CAS  Google Scholar 

  19. A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009)

    Article  CAS  Google Scholar 

  20. E. Fortunato, A. Pimentel, L. Pereira, A. Gonçalves, G. Lavareda, H. Águas, I. Ferreira, C.N. Carvalho, R. Martins, High field-effect mobility zinc oxide thin film transistors produced at room temperature. J. Non. Cryst. Solids 338–340, 806–809 (2004)

    Article  CAS  Google Scholar 

  21. Y. Li, F. DellaValle, M. Simonnet, I. Yamada, J.J. Delaunay, Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires. Appl. Phys. Lett. 94(2), 3–6 (2009)

    Google Scholar 

  22. Wu Ping, Jie Zhang, Lu Jianguo, Xifeng Li, Wu Chuanjia, Rujie Sun, Lisha Feng, Qingjun Jiang, Lu Bin, Xinhua Pan, Zhizhen Ye, Instability induced by ultraviolet light in ZnO thin-film transistors. IEEE Trans. Electron Devices 61(5), 1431–1435 (2014)

    Article  CAS  Google Scholar 

  23. W. Kim, K.S. Chu, ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity. Phys. Status Solidi Appl. Mater. Sci. 206(1), 179–182 (2009)

    Article  CAS  Google Scholar 

  24. P. Wu, J. Zhang, J. Lu, X. Li, C. Wu, R. Sun, Instability induced by ultraviolet light in ZnO thin-film transistors. Trans Electron Devices 61(5), 1431–1435 (2014)

    Article  CAS  Google Scholar 

  25. A. Gimenez, ZnO − paper based photoconductive UV sensor. J. Phys. 2(3), 282–287 (2010)

    Google Scholar 

  26. B.A. Vessalli, C.A. Zito, T.M. Perfecto, D.P. Volanti, T. Mazon, ZnO nanorods/graphene oxide sheets prepared by chemical bath deposition for volatile organic compounds detection. J. Alloys Compd. 696, 996–1003 (2017)

    Article  CAS  Google Scholar 

  27. M.P. Callao, Multivariate experimental design in environmental analysis. TrAC—Trends Anal. Chem. 62, 86–92 (2014)

    Article  CAS  Google Scholar 

  28. S.L.C. Ferreira, A.O. Caires, T.S. da Borges, A.M.D.S. Lima, L.O.B. Silva, W.N.L. dos Santos, Robustness evaluation in analytical methods optimized using experimental designs. Microchem. J. 131, 163–169 (2017)

    Article  CAS  Google Scholar 

  29. Experimental design and optimisation (4): Plackett–Burman designs. Anal. Methods, 5(8), 1901 (2013)

  30. D.C. Montgomery, Design and Analysis of Experiments, 8th edn. (wiley, Hoboken, 2013)

    Google Scholar 

  31. C.A. Nunes, M.P. Freitas, A.C.M. Pinheiro, S.C. Bastos, Chemoface: a novel free user-friendly interface for chemometrics. J. Braz. Chem. Soc. 23(11), 2003–2010 (2012)

    Article  CAS  Google Scholar 

  32. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morko̧, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 1–103 (2005)

    Article  CAS  Google Scholar 

  33. J.P. Braga, G.R. De Lima, G. Gozzi, L.F. Santos, Electrical characterization of thin-film transistors based on solution-processed metal oxides, in Design, Simulation and Construction of Field Effect Transistors, ed. by  D. Vikraman, H.-S. Kim (InTech, London, 2018), p. 8

    Google Scholar 

  34. M.J. Anderson, P.J. Whitcomb, DOE Simplified: Practical Tools for Effective Experimentation, 3rd edn. (CRC Press, Boca Raton, 2015)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from São Paulo Research Foundation (FAPESP) (Grants # 2013/24461-7 and 2014/50869-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and CNPq (Grant # 573762/2008-2). We also acknowledge the technical support from the Nanostructured Soft Materials Laboratory, LNNano-CNPEM, Brazil (XPS-23205 proposal) for XPS measurements and the Nanotechnology National Laboratory for Agriculture (LNNA/EMBRAPA) supported by CNPq/SISNANO/MCTI for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Fugikawa-Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, J.P., Moises, L.A., Gozzi, G. et al. Prediction of the electrical response of solution-processed thin-film transistors using multifactorial analysis. J Mater Sci: Mater Electron 30, 16939–16948 (2019). https://doi.org/10.1007/s10854-019-01695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01695-1

Navigation