Skip to main content
Log in

Intense red emission on dilute Mn-doped CaYAlO4-based ceramics obtained by laser floating zone

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The laser floating zone (LFZ) technique was used to produce polycrystalline fibers composed by P21/c monoclinic Y4Al2O9 (YAM) and \({\text{P}}\bar{4}21{\text{m}}\) tetragonal CaYAl3O7 (CYAM) phases embedded into I4/mmm tetragonal CaYAlO4 matrix. The scanning electron microscopy and X-ray diffraction patterns put in evidence the strong effect of growth rate on the microstructural and phases’ evolution. Besides the microstructural and structural analysis, complementary optical techniques as photoluminescence (PL), PL excitation (PLE), and lifetime measurements were used to characterize the produced fibers. The nonintentionally doped fibers were shown to exhibit an intense deep red emission likely due to Mn4+ trace impurities. From the PLE measurements, average crystal field strength was estimated with Dq/B ~ 2.94. Temperature-dependent PL measurements revealed that the red luminescence is due to the overlap of transitions from the almost electronic degenerate 2E and 4T2 excited states to the 4A2 ground state. The emission from the two excited states arises due to the breakdown of the adiabatic approximation. The overall luminescence intensity of the red emission was found to decrease from 11 K to RT, and the internal quantum efficiency, estimated from the ratio of the integrated luminescence at high and low temperatures, was found to be 60%. Time-resolved spectroscopy indicates a single decay time of ca. 2.0 ms at room temperature, corresponding to the spin and parity forbidden 2E → 4A2 transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Singh, V. Tanwar, S. Bhagwan, I. Singh, Optical and non-linear optical materials, in Advanced Magnetic and Optical Materials, ed. by A. Tiwari, P.K. Iyer, V. Kumar, H. Swart (Wiley, Hoboken, 2016), p. 317

    Google Scholar 

  2. D. Singh, V. Tanwar, A.P. Samantilleke, B. Marí, S. Bhagwan, P.S. Kadyan, I. Singh, J. Mater. Sci. 45(6), 2718 (2016)

    CAS  Google Scholar 

  3. A.G. Bispo Jr., S.A.M. Lima, L.D. Carlos, R.A.S. Ferreira, A.M. Pires, ECS J. Solid State Sci. Technol. 9, 016008 (2020)

    Google Scholar 

  4. S. Adachi, ECS J. Solid State Sci. Technol. 9, 016001 (2020)

    CAS  Google Scholar 

  5. J.M. Phillips, M.E. Coltrin, M.H. Crawford, A.J. Fischer, M.R. Krames, R. Mueller-Mach, G.O. Mueller, Y. Ohno, L.E.S. Rohwer, J.A. Simmons, J.Y. Tsao, Laser Photonics Rev. 1(4), 307 (2007)

    CAS  Google Scholar 

  6. J.Y. Tsao, M.E. Coltrin, M.H. Crawford, J.A. Simmons, Proc. IEEE 98(7), 1162 (2010)

    Google Scholar 

  7. R. Cao, Y. Ye, Q. Peng, G. Zheng, H. Ao, J. Fu, Y. Guo, B. Guo, Dyes Pigments 146, 14 (2017)

    CAS  Google Scholar 

  8. J. Rodrigues, S.M.C. Miranda, N.F. Santos, A.J. Neves, E. Alves, K. Lorenz, T. Monteiro, Mater. Chem. Phys. 134(2–3), 716 (2012)

    CAS  Google Scholar 

  9. Y. Chen, M. Wang, J. Wang, M. Wu, C. Wang, J. Solid State Lighting 1, 15 (2014)

    Google Scholar 

  10. J. Rodrigues, N. Ben Sedrine, M. Felizardo, M.J. Soares, E. Alves, A.J. Neves, V. Fellmann, G. Tourbot, T. Auzelle, B. Daudin, M. Bockowski, K. Lorenz, T. Monteiro, RSC Adv. 4(108), 62869 (2014)

    CAS  Google Scholar 

  11. M.R.N. Soares, T. Holz, F. Oliveira, T. Monteiro, RSC Adv. 5(26), 20138 (2015)

    CAS  Google Scholar 

  12. M.G. Brik, A.M. Srivastava, J. Lumin. 133, 69 (2013)

    CAS  Google Scholar 

  13. Y. Zhou, Q. Zhou, Y. Liu, Z. Wang, H. Yang, Q. Wang, Mater. Res. Bull. 73, 14 (2016)

    CAS  Google Scholar 

  14. R. Cao, W. Wang, J. Zhang, S. Jiang, Z. Chen, W. Li, X. Yu, J. Alloys Compd. 704, 124 (2017)

    CAS  Google Scholar 

  15. X. Huang, H. Guo, Dyes Pigments 152, 36 (2018)

    CAS  Google Scholar 

  16. X. Huang, J. Liang, B. Li, L. Sun, J. Lin, Opt. Lett. 43, 3305 (2018)

    CAS  Google Scholar 

  17. K. Sankarasubramanian, B. Devakumar, G. Annadurai, L. Sun, Y.J. Zeng, X. Huang, RSC Adv. 8, 30223 (2018)

    CAS  Google Scholar 

  18. Q. Sun, S. Wang, B. Li, H. Guo, X. Huang, J. Lumin. 203, 371 (2018)

    CAS  Google Scholar 

  19. L. Shi, Y. Han, Z. Ji, Z. Li, H. Li, J. Zhang, Z. Zhang, J. Mater. Sci. 30, 15504 (2019)

    CAS  Google Scholar 

  20. Q. Sun, S. Wang, B. Devakumar, L. Sun, J. Liang, X. Huang, ACS Omega 4, 13474 (2019)

    CAS  Google Scholar 

  21. S. Kadyan, D. Singh, J. Mater. Sci. 29, 17277 (2018)

    CAS  Google Scholar 

  22. D. Singh, V. Tanwar, A.P. Simantilke, B. Marí, P.S. Kadyan, I. Singh, Adv. Mater. Lett. 7, 47 (2016)

    CAS  Google Scholar 

  23. D. Singh, V. Tanwar, A. Samantilke, P.S. Kadyan, I. Singh, J. Mater. Sci. 26, 9977 (2015)

    CAS  Google Scholar 

  24. M. Yamaga, T. Yosida, Y. Inoue, N. Kodama, B. Henderson, Radiat. Eff. Defect 136, 33 (1995)

    Google Scholar 

  25. D. Geng, G. Li, M. Shang, C. Peng, Y. Zhang, Z. Cheng, J. Li, Dalton Trans. 41, 3078 (2012)

    CAS  Google Scholar 

  26. A. Guille, A. Pereira, G. Breton, A. Bensalah-Ledoux, B. Moine, J. Appl. Phys. 111, 043104 (2012)

    Google Scholar 

  27. Y. Zhang, X. Li, K. Li, H. Lian, M. Shang, J. Lin, A.C.S. Appl, Mater. Interfaces 7, 2715 (2015)

    CAS  Google Scholar 

  28. W. Wang, X. Yan, X. Wu, Z. Zhang, B. Hu, J. Zhou, J. Cryst. Growth 219, 56 (2000)

    CAS  Google Scholar 

  29. P.O. Petit, J. Petit, Ph Goldner, B. Viana, Opt. Mater. 30, 1093 (2008)

    CAS  Google Scholar 

  30. T. Stoyanova-Lyubenova, J.B. Carda, M. Ocaña, J. Eur. Ceram. Soc. 29, 2193 (2009)

    Google Scholar 

  31. A. Yamaji, A. Suzuki, Y. Shoji, S. Kurosawa, J. Pejchal, K. Kamada, Y. Yokota, A. Yoshikawa, J. Cryst. Growth 393, 138 (2014)

    CAS  Google Scholar 

  32. A. Ueda, M. Higuchi, D. Yamada, S. Namiki, T. Ogawa, S. Wada, K. Tadanaga, J. Cryst. Growth 404, 152 (2014)

    CAS  Google Scholar 

  33. F. Rey-García, N. Ben Sedrine, M.R. Soares, A.J.S. Fernandes, A.B. Lopes, N. Ferreira, T. Monteiro, F.M. Costa, Opt. Mater. Express 7, 868 (2017)

    Google Scholar 

  34. F. Rey-García, J. Rodrigues, A.J.S. Fernandes, M.R. Soares, T. Monteiro, F.M. Costa, CrystEngComm 20, 7386 (2018)

    Google Scholar 

  35. F. Rey-García, A.J.S. Fernandes, F.M. Costa, Mater. Res. Bull. 112, 413 (2019)

    Google Scholar 

  36. M.R.B. Andreeta, A.C. Hernandes, in Springer Handbook of Crystal Growth, ed. by G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Springer, Berlin, 2010), p. 393

    Google Scholar 

  37. R.G. Carvalho, A.J.S. Fernandes, F.J. Oliveira, E. Alves, N. Franco, C. Louro, R.F. Silva, F.M. Costa, J. Eur. Ceram. Soc. 30, 3311 (2010)

    CAS  Google Scholar 

  38. I. de Francisco, R.I. Merino, V.M. Orera, A. Larrea, J.I. Peña, J. Eur. Ceram. Soc. 25, 1341 (2005)

    Google Scholar 

  39. N.F. Santos, A.J.S. Fernandes, L.C. Alves, N.A. Sobolev, E. Alves, K. Lorenz, F.M. Costa, T. Monteiro, Nucl. Instr. Meth. Phys. Res. B 306, 195 (2013)

    CAS  Google Scholar 

  40. R.V. Perrella, C.S. Nascimento Júnior, M.S. Góes, E. Percoraro, M.A. Schiavon, C.O. Paiva-Santos, H. Lima, M.A. Couto dos Santos, S.J.L. Ribeiro, J.L. Ferrari, Opt. Mater. 57, 45 (2016)

    CAS  Google Scholar 

  41. J.M. Vieira, R.A. Silva, R.F. Silva, F.M. Costa, Appl. Surf. Sci. 258, 9175 (2012)

    CAS  Google Scholar 

  42. F. Carrasco, R.A. Silva, N.J.O. Silva, R.F. Silva, J.M. Vieira, F.M. Costa, Appl. Surf. Sci. 255, 5503 (2009)

    CAS  Google Scholar 

  43. F. Amaral, L.C. Costa, M.A. Valente, A.J.S. Fernandes, N. Franco, E. Alves, F.M. Costa, Acta Mater. 59, 102 (2011)

    CAS  Google Scholar 

  44. J.Y. Pastor, J. Llorca, P. Poza, I. de Francisco, R.I. Merino, J.I. Peña, J. Eur. Ceram. Soc. 25, 1215 (2005)

    CAS  Google Scholar 

  45. R.G. Carvalho, F.J. Oliveira, R.F. Silva, F.M. Costa, Mater. Des. 61, 211 (2014)

    CAS  Google Scholar 

  46. R.G. Carvalho, F.M. Figueiredo, A.J.S. Fernandes, R.F. Silva, F.M. Costa, Sci. Adv. Mater. 5(12), 1847 (2013)

    CAS  Google Scholar 

  47. F. Rey-García, N. Ben Sedrine, A.J.S. Fernandes, T. Monteiro, F.M. Costa, J. Eur. Ceram. Soc. 38, 2059 (2018)

    Google Scholar 

  48. International Centre for Diffraction Data (2019). http://icdd.com. Accessed 9 Oct 2019

  49. A. Richter, M. Göbbels, J. Phase Equilib. Diffus. 31, 157 (2010)

    CAS  Google Scholar 

  50. L.B. McCusker, R.B. Dreele, D.E. Cox, D. Louër, P. Scardi, J. Appl. Cryst. 32, 36 (1999)

    CAS  Google Scholar 

  51. E. Guilmeau, D. Chateigner, J. Noudem, R. Funahashi, S. Horii, B. Ouladdiaf, J. Appl. Cryst. 38, 199 (2005)

    CAS  Google Scholar 

  52. Y.P. Udalov, Z.S. Appen, V.V. Parshina, Russ. J. Inorg. Chem. 24, 1549 (1979)

    Google Scholar 

  53. W.M. Yen, M.J. Weber, Inorganic phosphors: compositions, preparation and optical properties (CRC Press, Boca Ratón, 2004)

    Google Scholar 

  54. F.M. Costa, R.F. Silva, J.M. Vieira, Supercond. Sci. Technol. 14(11), 910 (2001)

    CAS  Google Scholar 

  55. M.F. Carrasco, R.F. Silva, J.M. Vieira, F.M. Costa, Supercond. Sci. Technol. 22, 065016 (2009)

    Google Scholar 

  56. F.M. Costa, M.F. Carrasco, R.F. Silva, J.M. Vieira, Superc. Sci. Technol. 16(3), 392 (2003)

    CAS  Google Scholar 

  57. P. Rudolph, Handbook of Crystal Growth (Elsevier, Boston, 2015), p. 281

    Google Scholar 

  58. The Effects of Impurities on Lime Quality—Featured Industry (PEC Consulting Group, 2019). http://pecconsultinggroup.com/2014/07/22/. Accessed 9 Oct 2019

  59. A. Selot, J. Tripathi, S. Tripathi, M. Aynyas, Lumin. J. Biol. Chem. Lumin. 29, 362 (2014)

    CAS  Google Scholar 

  60. P. Pathak, A. Selot, R. Kurchania, Radiat. Phys. Chem. 99, 26 (2014)

    CAS  Google Scholar 

  61. T. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954)

    CAS  Google Scholar 

  62. B. Struve, G. Huber, Appl. Phys. B 36, 195 (1985)

    Google Scholar 

  63. W.H. Fonger, C.W. Struck, Phys. Rev. B 11, 3251 (1975)

    CAS  Google Scholar 

  64. M. Yamaga, B. Henderson, K.P. O’Donnell, Phys. Rev. B 46, 3273 (1992)

    CAS  Google Scholar 

  65. A.A. Kaminskii, X. Xu, O. Lux, H. Rhee, H.J. Eichler, J. Zhang, D. Zhou, A. Shrikawa, K. Ueda, J. Xu, Laser Phys. Lett. 9, 306 (2012)

    CAS  Google Scholar 

  66. J.P. Hehir, M.O. Henry, J.P. Larkin, G.F. Imbusch, J. Phys. C. 7, 2241 (1974)

    CAS  Google Scholar 

  67. M. Yamaga, B. Henderson, K.P. O’Donnell, C. Trager Cowan, A. Marshall, Appl. Phys. B 50, 425 (1990)

    Google Scholar 

Download references

Acknowledgements

This work is funded by FEDER funds (COMPETE 2020 Programme) and National Funds through FCT —Portuguese Foundation for Science and Technology (UID/CTM/50025/2019). F. Rey-García also acknowledges EU (Project SPRINT (EU H2020-FET-OPEN/0426)), Xunta de Galicia (ED431E 2018/08), and FCT (SFRH/BPD/108581/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rey-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey-García, F., Rodrigues, J., Monteiro, T. et al. Intense red emission on dilute Mn-doped CaYAlO4-based ceramics obtained by laser floating zone. J Mater Sci: Mater Electron 30, 21454–21464 (2019). https://doi.org/10.1007/s10854-019-02528-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02528-x

Navigation