Skip to main content

Advertisement

Log in

Preparation, structural characteristics and optical parameters of the synthesized nano-crystalline sulphur-doped Bi2Te2.85Se0.15 thermoelectric materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, a systematic preparation of Bi2Te2.85Se0.15−xSx (x = 0.0, 0.02, 0.04 and 0.06) compositions was carried out by solvothermal method. The materials were characterized by XRD, SEM, EDX, TEM and Raman spectroscopy. XRD, as well as TEM, to confirm the nanostructure of samples. The electrical and thermal properties were investigated in the temperature range from room temperature to 600 K. The highest power factor was 1.3 × 10−2 mW/K2 m at 600 K for (x = 0.06) sample. This improvement in the thermoelectric properties may be due to the ordered atomic arrangement of Bi, Te, and Se induced by sulphur in the Bi2Te2.85Se0.15−xSx nanocomposites, which was confirmed by X-ray diffraction and Raman spectral analysis. The optical properties, such as energy gap, refractive index, extinction coefficient and dielectric constants, were obtained from the diffused reflectance data in the range of 200 to 800 nm. Sulphur doping influences the optical energy gap, reaching the lowest value for x = 0.04 samples (0.14 eV), while the highest allowed energy gap was found in x = 0.06 ones (0.41 eV). Also, It should be mentioned that dielectric constants (εr and εi) were affected due to Sulphur doping, whereas the samples with x = 0.04 and 0.02 have the highest and lowest εr, respectively, and the opposite for εi when increasing the wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. G. Min, D.M. Rowe, Solid State Electron. (1999). https://doi.org/10.1016/s0038-1101(99)00045-3

    Article  Google Scholar 

  2. I. Stark, M. Stordeur, in 18th International Conference on Thermoelectrics (Baltimore, 1999), p. 465

  3. T.M. Tritt, Science 283, 804 (1999). https://doi.org/10.1126/science.283.5403.804

    Article  CAS  Google Scholar 

  4. Y. Jiang, Y.Y. Sun, M. Chen, Y. Wang, Z. Li, C. Song, K. He, L. Wang, X. Chen, Q.K. Xue, X. Ma, S.B. Zhang, Phys. Rev. Lett. 24, 1105 (2012). https://doi.org/10.1103/PhysRevLett.108.066809

    Article  CAS  Google Scholar 

  5. E. Velmre, T.J. Seebeck, Proc. Estonian Acad. Sci. Eng. 13, 276 (2007)

    Google Scholar 

  6. D.C. Nemir, J. Beck, in International Conference of Thermoelectric, Freiburg (2009)

  7. İ. Şişman, A. Başoğlu, Mater. Sci. Semicond. Proc. 54, 57 (2016). https://doi.org/10.1016/j.mssp.2016.07.001

    Article  CAS  Google Scholar 

  8. K. Biswas, J.Q. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012)

    CAS  Google Scholar 

  9. Q.H. Zhang, X. Ai, L.J. Wang, Y.X. Chang, W. Luo, W. Jiang, L.D. Chen, Adv. Funct. Mater. 25, 966 (2015)

    CAS  Google Scholar 

  10. B. Ryu, B.-S. Kim, J.E. Lee, S.-J. Joo, B.-K. Min, H.W. Lee, S. Park, M.-W. Oh, J. Korean Phys. Soc. 68, 115 (2016)

    CAS  Google Scholar 

  11. J.P. Carmo, J.F. Ribeiro, M.F. Goncalves, J.H. Correia, J. Micromech. Microeng. 20, 18 (2010). https://doi.org/10.1088/0960-1317/20/8/085033

    Article  CAS  Google Scholar 

  12. W. Glatz, E. Schwyter, L. Durrer, C. Hierold, J. Microelectromech. Syst. 18, 763772 (2009). https://doi.org/10.1109/jmems.2009.2021104

    Article  Google Scholar 

  13. Z. Wang, B. Leonov, P. Fiorini, C.V. Hoof, Sens. Actuators A 156, 95102 (2009). https://doi.org/10.1016/j.sna.2009.02.028

    Article  CAS  Google Scholar 

  14. M.Y. Kim, T.S. Oh, Mater. Trans. 51, 19091913 (2010). https://doi.org/10.2320/matertrans.M2010122

    Article  CAS  Google Scholar 

  15. M.Y. Kim, T.S. Oh, Mater. Trans. 53, 21602165 (2012). https://doi.org/10.2320/matertrans.M2012265

    Article  CAS  Google Scholar 

  16. D.K.C. MacDonald, Thermoelectricity: An Introduction to the Principles (Dover, New York, 2006)

    Google Scholar 

  17. P.H. Le, C.N. Liao, C.W. Luo, J.Y. Lin, J. Leu, Appl. Surf. Sci. 285P, 657 (2013). https://doi.org/10.1016/j.apsusc.2013.08.107

    Article  CAS  Google Scholar 

  18. M. Takashiri, M. Takiishi, S. Tanaka, K. Miyazaki, H. Tsukamoto, J. Appl. Phys. 101, 074301 (2007). https://doi.org/10.1063/1.2717867

    Article  CAS  Google Scholar 

  19. K. Tezuka, S. Kase-Yue, J. Shan, J. Asian Ceram. Soc. 2, 366 (2014). https://doi.org/10.1016/j.jascer.2014.07.009

    Article  Google Scholar 

  20. R.J. Mehta, Y. Zhang, C. Karthik, B. Single, R.W. Siegel, T. Borac, T.G. Ramanth, Nat. Mater. 11, 233 (2012). https://doi.org/10.1038/nmat3213

    Article  CAS  Google Scholar 

  21. A. Soni, Z. Yanynan, Y. Ligen, M.K.K. Aik, M.S. Dresselhans, Q. Xiong, Nano Lett. 12, 120 (2012). https://doi.org/10.1021/nl2034859

    Article  CAS  Google Scholar 

  22. H.J. Goldsmid, Phys. State Solidi A 205, 2966 (2008). https://doi.org/10.1002/pssa.200824241

    Article  CAS  Google Scholar 

  23. D. Kim, C. Kim, D. Ha, H. Kim, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2011.02.059

    Article  Google Scholar 

  24. W.L. Ren, C.X. Cheng, Y.B. Xu, Z. Ren, Y. Zhong, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.04.056

    Article  Google Scholar 

  25. D. Li, R.R. Sun, X.Y. Qin, Prog. Nat. Sci. Mater. Int. (2011). https://doi.org/10.1016/S1002-0071(12)60066-5

    Article  Google Scholar 

  26. H. Scherrer, S. Scherrer, in Thermoelectric Handbook: Macro to Nano, ed. by D.M. Rowe (CRC Press, Boca Raton, 2006)

    Google Scholar 

  27. H. Kaibe, Y. Tanaka, M. Sakata, I. Nishida, J. Phys. Chem. Solids 50, 945950 (1989). https://doi.org/10.1016/0022-3697(89)90045-0

    Article  Google Scholar 

  28. F. Wu, H. Song, J. Jia, X. Hu, Prog. Nat. Sci. Mater. Int. 23(4), 408 (2013). https://doi.org/10.1016/j.pnsc.2013.06.007

    Article  Google Scholar 

  29. K. Uemura, I. Nishida, Thermoelectric Semiconductor and Its Application (Nikkankogyo Shinbunsha, Tokyo, 1988), p. 179

    Google Scholar 

  30. H.T. Kaibe, M. Sakata, I.A. Nishida, J. Phys. Chem. Solids 51, 1083 (1990). https://doi.org/10.1016/0022-3697(90)90068-Q

    Article  CAS  Google Scholar 

  31. D. Perrin, M. Chitrob, S. Scherrer, H. Scherrer, J. Phys. Chem. Solids 61, 1687 (2000). https://doi.org/10.1016/S0022-3697(00)00030-5

    Article  CAS  Google Scholar 

  32. C. Liang, L. Liu, H. Li, D. Qian, C. Liu, J. Jia, J. Chen, Mater. Charact. 16, 172 (2016). https://doi.org/10.1016/j.matchar.2016.02.009

    Article  CAS  Google Scholar 

  33. Y.L. Zhang, R.J. Mehta, M. Belley, L. Han, G. Ramanath, T. Borca-Tasciuc, Appl. Phys. Lett. 100, 193113 (2012). https://doi.org/10.1063/1.4711774

    Article  CAS  Google Scholar 

  34. R. Marschall, A. Mukherji, A. Tanksale, C. Sun, S.C. Smith, L. Wang, G.Q. Lu, J. Mater. Chem. 21, 8871 (2011). https://doi.org/10.1039/c0jm02549f

    Article  CAS  Google Scholar 

  35. Y.G. Wu, Z.J. Lin, Z.Y. Tian, C. Han, J. Liu, H.M. Zhang, Z.Q. Zhang, Z.C. Wang, L.C. Dai, Y. Cao, Z.Y. Hu, Mater. Sci. Semicond. Process. 46, 17 (2016)

    CAS  Google Scholar 

  36. C.V. Reddy, I.N. Reddy, V.V.N. Harish, K.R. Reddy, N.P. Shetti, J. Shim, T.M. Aminabhavi, Chemosphere 239, 124766 (2020)

    CAS  Google Scholar 

  37. C.V. Reddy, I.N. Reddy, K. Ravindranadh, K.R. Reddy, N.P. Shetti, D. Kim, J. Shim, T.M. Aminabhavi, J. Environ. Manag. 260, 110088 (2020)

    CAS  Google Scholar 

  38. N.R. Reddy, U. Bhargav, M.M. Kumari, K.K. Cheralathan, M.V. Shankar, K.R. Reddy, T.A. Saleh, T.M. Aminabhavi, J. Environ. Manag. 254, 109747 (2020)

    CAS  Google Scholar 

  39. D.K. Kumar, J. Loskot, J. Křiž, N. Bennett, H.M. Upadhyaya, V. Sadhu, C.V. Reddy, K.R. Reddy, Sol. Energy 199, 570 (2020)

    Google Scholar 

  40. C.V. Reddy, I.N. Reddy, K.R. Reddy, S. Jaesool, K. Yoo, Electrochim. Acta 317, 416 (2019)

    CAS  Google Scholar 

  41. N.P. Shetti, S.D. Bukkitgar, K. Raghava Reddy, C.V. Reddy, T.M. Aminabhavi, Colloids Surf. B 178, 385 (2019)

    CAS  Google Scholar 

  42. S.B. Patil, P.S. Basavarajappa, N. Ganganagappa, M.S. Jyothi, A.V. Raghu, K.R. Reddy, Int. J. Hydrogen Energy 44, 13022 (2019)

    CAS  Google Scholar 

  43. P.S. Basavarajappa, B.N.H. Seethya, N. Ganganagappa, K.B. Eshwaraswamy, R.R. Kakarla, Chem. Select 3, 9025 (2018)

    CAS  Google Scholar 

  44. K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940 (2016)

    CAS  Google Scholar 

  45. K. Omri, F. Alharbi, Appl. Phys. A 125, 696 (2019)

    Google Scholar 

  46. K. Omri, A. Bettaibi, K. Khirouni, L. El-Mir, Physica B 537, 167 (2018)

    CAS  Google Scholar 

  47. M.S. Shalaby, N.M. Yousif, H.A. Zayed, H.M. Hashem, L.A. Wahab, J. Sci. Res. Sci. 36, 339 (2019)

    Google Scholar 

  48. W.J. Xie, J. He, H.J. Kang, X.F. Tang, S. Zhu, M. Laver, S.Y. Wang, J.R.D. Copley, C.M. Brown, Q.J. Zhang, T.M. Tritt, Nano Lett. 10, 3283 (2010)

    CAS  Google Scholar 

  49. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008)

    CAS  Google Scholar 

  50. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)

    Google Scholar 

  51. A.L. Allred, E.G. Rochow, J. Inorg. Nucl. Chem. 5, 264 (1958)

    CAS  Google Scholar 

  52. X. Chen, L. Liu, Y. Dong, L.N. Wang, L. Chen, W. Jianga, Prog. Nat. Sci. Mater. Int. (2012). https://doi.org/10.1016/j.pnsc.2012.04.006

    Article  Google Scholar 

  53. J.G. Yu, H.T. Guo, S.A. Davis, S. Mann, Adv. Funct. Mater. 16, 2035–2041 (2006)

    CAS  Google Scholar 

  54. R. Jin, J. Liu, G. Li, J. Cry. Res. Technol. (2014). https://doi.org/10.1002/crat.201400012

    Article  Google Scholar 

  55. Y. Deng, C.-W. Nan, G.-D. Wei, L. Guo, Y.-H. Lin, Chem. Phys. Lett. 374, 410 (2003)

    CAS  Google Scholar 

  56. X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, J.P. Tu, Appl. Phys. A 80, 1567 (2005)

    CAS  Google Scholar 

  57. X.A. Fan, J.Y. Yang, Z. Xie, K. Li, W. Zhu, X.K. Duan, C.J. Xiao, Q.Q. Zhang, J. Phys. D 40, 5975 (2007)

    CAS  Google Scholar 

  58. H.J. Kim, M.-K. Han, H.-Y. Kim, W. Lee, S.-J. Kim, Bull. Korean Chem. Soc. (2012). https://doi.org/10.5012/bkcs.2012.33.12.3977

    Article  Google Scholar 

  59. F. Wua, W. Wang, X. Hu, M. Tang, Prog. Nat. Sci. Mater. Int. (2017). https://doi.org/10.1016/j.pnsc.2017.02.009

    Article  Google Scholar 

  60. Y. Deng, X. Zhou, G. Wei, J. Liu, C. Nan, S. Zhao, J. Phys. Chem. Solids 63, 2119–2121 (2002)

    CAS  Google Scholar 

  61. Z.H. Zheng, P. Fan, T.B. Chen, Z.K. Cai, P.J. Liu, G.X. Liang, D.P. Zhang, X.M. Cai, Thin Solid Films (2012). https://doi.org/10.1016/j.tsf.2012.03.086

    Article  Google Scholar 

  62. D. Park, S. Park, K. Jeong, H. Jeong, J. Yong-Song, M. Cho, Sci. Rep. 6, 19132 (2016). https://doi.org/10.1038/srep19132

    Article  CAS  Google Scholar 

  63. C. Wang, X. Zhu, L. Nilsson, J. Wen, G. Wang, X. Shan, Q. Zhang, S. Zhang, J. Jia, Q. Xue, Nano Res. 6, 688 (2013). https://doi.org/10.1007/s12274-013-0344-4

    Article  CAS  Google Scholar 

  64. G.D. Keskar, R. Podila, L. Zhang, A.M. Rao, L.D. Pfefferle, J. Phys. Chem. C 117, 9446 (2013). https://doi.org/10.1021/jp402879h

    Article  CAS  Google Scholar 

  65. H. Xu, Y. Song, Q. Gong, W. Pan, X. Wu, S. Wang, Mod. Phys. Lett. B (2015). https://doi.org/10.1142/S021798491550075X

    Article  Google Scholar 

  66. N.S. Abishek, K. Gopalakrishna Naik, AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5032402

    Article  Google Scholar 

  67. V. Russo, A. Bailini, M. Zamboni, M. Passoni, C. Conti, C.S. Casari, A. Li-Bassi, C.E. Bottani, J. Raman Spectrosc. 39, 205 (2008). https://doi.org/10.1002/jrs.1874

    Article  CAS  Google Scholar 

  68. D. Mei, H. Wang, Y. Li, Z. Yao, T. Zhu, J. Mater. Res. 30, 2585 (2015). https://doi.org/10.1557/jmr.2015.142

    Article  CAS  Google Scholar 

  69. W.S. Liu, X. Yan, G. Chen, Z.F. Ren, Nano Energy 1, 42 (2012)

    CAS  Google Scholar 

  70. J.R. Sambles, Thin Solid Films 106, 321 (1983)

    CAS  Google Scholar 

  71. A.F. Mayadas, M. Shatzkes, Phys. Rev B. 1, 1382 (1970)

    Google Scholar 

  72. J.W.C. Devries, Thin Solid Films 167, 25 (1988)

    CAS  Google Scholar 

  73. Z. Wang, K. Matsuoka, T. Araki, T. Akao, T. Onda, Z. Chen, Procedia Eng. 81, 616 (2014). https://doi.org/10.1016/j.proeng.2014

    Article  CAS  Google Scholar 

  74. F. Wua, B.H. Songa, J. Jiaa, X. Hua, Prog. Nat. Sci. Mater. Int. (2013). https://doi.org/10.1016/j.pnsc.2013.06.007

    Article  Google Scholar 

  75. M. Hong, T.C. Chasapis, Z.-G. Chen, L. Yang, M.G. Kanatzidis, G.J. Snyderand, J. Zou, ACS Nano (2016). https://doi.org/10.1021/acsnano.6b01156

    Article  Google Scholar 

  76. Z.-L. Wang, T. Onda, Z.-C. Chen, Scr. Mater. 146, 119 (2018)

    CAS  Google Scholar 

  77. W. Jung, H. Kim, I. Kim, Korean J. Met. Mater. 56, 544 (2018). https://doi.org/10.3365/KJMM.2018.56.7.544

    Article  CAS  Google Scholar 

  78. M. Fusa, N. Sumida, K. Hasezaki, Mater. Trans. 53, 597 (2012). https://doi.org/10.2320/matertrans.ME201108

    Article  CAS  Google Scholar 

  79. J. Jiang, L.D. Chen, S.Q. Bai, Q. Yao, Q. Wang, Scr. Mater. 52, 347 (2005). https://doi.org/10.1016/j.scriptamat.2004.10.038

    Article  CAS  Google Scholar 

  80. S. Wang, W. Xic, H. Li, X. Tang, Intermetallics 19, 1024 (2011). https://doi.org/10.1016/j.intermet.2011.03.006

    Article  CAS  Google Scholar 

  81. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015). https://doi.org/10.1063/1.4908244

    Article  CAS  Google Scholar 

  82. P. Kubelka, JOSA 38, 448 (1948)

    CAS  Google Scholar 

  83. F. Yakuphanoglu, R. Mehrotra, A. Gupta, M. Munoz, J. Appl. Polym. Sci. 114, 794 (2009)

    CAS  Google Scholar 

  84. E. Yassitepe, Z. Khalifa, G.H. Jaffari, C.-S. Chou, S. Zulfiqar, M.I. Sarwar, S.I. Shah, Powder Technol. 201, 27 (2010)

    CAS  Google Scholar 

  85. J. Tauc, A. Menth, J. Non-Cryst, Solids 8–10, 569 (1972)

    Google Scholar 

  86. F. Yakuphanoglu, J. Alloys Compd. 507, 184 (2010)

    CAS  Google Scholar 

  87. C.B. Satterhwaite, R.W. Ure Jr., Phys. Rev. B 108, 1164 (1957)

    Google Scholar 

  88. D. Kojihayashi, D. Koto, K. Shimakawa, J. Non-Cryst. Solids 696, 198 (1996)

    Google Scholar 

  89. A. Akrap, A. Ubaldini, E. Giannini, L. Forro, EPL Euro Phys. Lett. 107, 57008 (2014)

    Google Scholar 

  90. A. Sharma, P.B. Barman, Appl. Phys. B 97, 835–840 (2009)

    CAS  Google Scholar 

  91. A. Sharma, P.B. Barman, Physica B 405, 822 (2010)

    Google Scholar 

  92. A.A.R. Elshabini-Riad, F.D. Barlow, Thin Film Technology Handbook, 2nd edn. (McGraw-Hill, New York, 1997), p. 24

    Google Scholar 

  93. H. Brooks, Advances in Electronics and Electron Physics, 1st edn. (Academic Press, New York, 1955)

    Google Scholar 

  94. M. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 258, 3039 (2012)

    CAS  Google Scholar 

  95. S.R. Elliott, The Physics and Chemistry of Solids, 2nd edn. (Wiley, Chichester, 2000)

    Google Scholar 

  96. N.A. Subrahamanyam, A Textbook of Optics, 9th edn. (BRJ Laboratory, Delhi, 1977)

    Google Scholar 

  97. S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 255, 2353 (2008)

    CAS  Google Scholar 

  98. S.A. Fayek, S.M. El-Sayed, NDTE Int. 39, 39 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

A. Sotelo acknowledges Gobierno de Aragón-FEDER (Research Group T 54-17R), and the Spanish MINECO-FEDER (Project MAT2017-82183-C3-1-R) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shalaby.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, M.S., Hashem, H.M., Yousif, N.M. et al. Preparation, structural characteristics and optical parameters of the synthesized nano-crystalline sulphur-doped Bi2Te2.85Se0.15 thermoelectric materials. J Mater Sci: Mater Electron 31, 10612–10627 (2020). https://doi.org/10.1007/s10854-020-03611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03611-4

Navigation