Skip to main content
Log in

Enhanced dielectric properties and relaxation behavior in double perovskite-polymer-based flexible 0–3 nanocomposite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The double perovskite nanostructures were prepared by using hydrothermal route to obtain single-phase rhombohedral structure. The flexible magneto-dielectric nanocomposite films with double perovskite La2NiMnO6 (LNMO) nanostructures and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer were fabricated by solution casting method. The structural, thermal, and dielectric properties of the developed double perovskite nanostructures and their combination with (PVDF-HFP) as nanocomposite films were investigated. The fabricated nanocomposite films demonstrated an improvement in the crystalline phase with the increase in the loading of La2NiMnO6 (0–40 wt%). The nanocomposite film with 30 wt% of LNMO exhibited higher dielectric permittivity (> 40) alongside with a dielectric loss of as low as 0.6 at room temperature and thereafter it reached percolation threshold. The dielectric studies also revealed an efficient charge separation and a strong interfacial polarization at the interfaces by facilitating the charge accumulation in the nanocomposites than that of the pure polymer film. The thermally activated relaxation behavior in the films followed the Arrhenius law and the obtained activation energies were found to be ~ 1.12 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity. J Alloys Compd 715, 29–36 (2017). https://doi.org/10.1016/j.jallcom.2017.04.310

    Article  CAS  Google Scholar 

  2. R. Sankar Ganesh, S.K. Sharma, S. Sankar et al., Microstructure, structural, optical and piezoelectric properties of BiFeO3 nanopowder synthesized from sol-gel. Curr Appl Phys 17, 409–416 (2017). https://doi.org/10.1016/j.cap.2016.12.008

    Article  Google Scholar 

  3. C. Li, B. Liu, Y. He et al., Preparation, characterization and dielectric tunability of La 2NiMnO6 ceramics. J Alloys Compd 590, 541–545 (2014). https://doi.org/10.1016/j.jallcom.2013.12.170

    Article  CAS  Google Scholar 

  4. P. Anithakumari, B.P. Mandal, E. Abdelhamid et al., Enhancement of dielectric, ferroelectric and magneto-dielectric properties in PVDF-BaFe12O19 composites: a step towards miniaturizated electronic devices. RSC Adv 6, 16073–16080 (2016). https://doi.org/10.1039/c5ra27023e

    Article  CAS  Google Scholar 

  5. D. Bhadra, M.G. Masud, S.K. De, B.K. Chaudhuri, Observation of large magnetodielectric and direct magnetoelectric behavior in LCMO/PVDF 0–3 nanocomposites. Appl Phys Lett 102, 5 (2013). https://doi.org/10.1063/1.4793307

    Article  CAS  Google Scholar 

  6. Martins P, Kolen’ Ko Y V., Rivas J, Lanceros-Mendez S (2015) Tailored Magnetic and Magnetoelectric Responses of Polymer-Based Composites. ACS Appl Mater Interfaces 7:15017–15022. https://doi.org/10.1021/acsami.5b04102

  7. L.G. Betancourt-Cantera, A.M. Bolarín-Miró, C.A. Cortés-Escobedo et al., Structural transitions and multiferroic properties of high Ni-doped BiFeO3. J Magn Magn Mater 456, 381–389 (2018). https://doi.org/10.1016/j.jmmm.2018.02.065

    Article  CAS  Google Scholar 

  8. Q.Y. Rong, W.Z. Xiao, C.P. Cheng, L.L. Wang, Magnetism and ferroelectricity in BiFeO 3 doped with Ga at Fe sites. J Alloys Compd 797, 117–121 (2019). https://doi.org/10.1016/j.jallcom.2019.05.082

    Article  CAS  Google Scholar 

  9. Y. Tian, F. Xue, Q. Fu et al., Structural and physical properties of Ti-doped BiFeO3 nanoceramics. Ceram Int 44, 4287–4291 (2018). https://doi.org/10.1016/j.ceramint.2017.12.013

    Article  CAS  Google Scholar 

  10. T. Maiti, R. Guo, A.S. Bhalla, Enhanced electric field tunable dielectric properties of BaZrxTi1-xO3 relaxor ferroelectrics. Appl Phys Lett 90, 1–4 (2007). https://doi.org/10.1063/1.2734922

    Article  CAS  Google Scholar 

  11. Yang WZ, Liu XQ, Lin YQ, Chen XM, Structure, magnetic, and dielectric properties of La2Ni(Mn1-xTix)O6 ceramics. J Appl Phys 111, 1–9 (2012). https://doi.org/10.1063/1.4704392

  12. V.M. Gaikwad, K.K. Yadav, S.E. Lofland et al., New low temperature process for stabilization of nanostructured La2NiMnO6 and their magnetic properties. J Magn Magn Mater 471, 8–13 (2019). https://doi.org/10.1016/j.jmmm.2018.08.081

    Article  CAS  Google Scholar 

  13. Z. Cao, L. Wang, W. He et al., The electric and dielectric responses of La2Ni1-xMgxMnO6 solid solution. J Alloys Compd 628, 81–88 (2015). https://doi.org/10.1016/j.jallcom.2014.12.051

    Article  CAS  Google Scholar 

  14. H. Chen, Z. Cao, L. Wang et al., The giant dielectric constant and tunable properties of La2NiMnO6-xMgO ceramics. J Alloys Compd 616, 213–220 (2014). https://doi.org/10.1016/j.jallcom.2014.07.119

    Article  CAS  Google Scholar 

  15. Y.Q. Lin, X.M. Chen, X.Q. Liu, Relaxor-like dielectric behavior in La2NiMnO6 double perovskite ceramics. Solid State Commun 149, 784–787 (2009). https://doi.org/10.1016/j.ssc.2009.02.028

    Article  CAS  Google Scholar 

  16. Z. Cao, X. Liu, W. He et al., Extrinsic and intrinsic contributions for dielectric behavior of La2NiMnO6 ceramic. Phys B Condens Matter 477, 8–13 (2015). https://doi.org/10.1016/j.physb.2015.07.030

    Article  CAS  Google Scholar 

  17. S. Zhao, L. Shi, S. Zhou et al., Size-dependent magnetic properties and Raman spectra of La2NiMnO6 nanoparticles. J Appl Phys 106, 1–6 (2009). https://doi.org/10.1063/1.3269707

    Article  CAS  Google Scholar 

  18. Tiwary S, Kuila S, Sahoo MR, et al., Magnetoelectricity in La2NiMnO6 and its PVDF impregnated derivative. J Appl Phys 124, 1–8 (2018). https://doi.org/10.1063/1.5037736

  19. F.N. Sayed, S.N. Achary, O.D. Jayakumar et al., Role of annealing conditions on the ferromagnetic and dielectric properties of La2NiMnO6. J Mater Res 26, 567–577 (2011). https://doi.org/10.1557/jmr.2011.4

    Article  CAS  Google Scholar 

  20. R. Aepuru, B.V. Bhaskara Rao, S.N. Kale, H.S. Panda, Unique negative permittivity of the pseudo conducting radial zinc oxide-poly(vinylidene fluoride) nanocomposite film: enhanced dielectric and electromagnetic interference shielding properties. Mater Chem Phys 167, 61–69 (2015). https://doi.org/10.1016/j.matchemphys.2015.10.010

    Article  CAS  Google Scholar 

  21. S. Manna, S.K. Batabyal, A.K. Nandi, Preparation and characterization of silver-poly(vinylidene fluoride) nanocomposites: Formation of piezoelectric polymorph of poly(vinylidene fluoride). J Phys Chem B 110, 12318–12326 (2006). https://doi.org/10.1021/jp061445y

    Article  CAS  Google Scholar 

  22. R. Aepuru, H.S. Panda, Adsorption of charge carriers on radial zinc oxide and the study of their stability and dielectric behavior in poly(vinylidene fluoride). J Phys Chem C 118, 18868–18877 (2014). https://doi.org/10.1021/jp504527b

    Article  CAS  Google Scholar 

  23. O.D. Jayakumar, E.H. Abdelhamid, V. Kotari et al., Fabrication of flexible and self-standing inorganic-organic three phase magneto-dielectric PVDF based multiferroic nanocomposite films through a small loading of graphene oxide (GO) and Fe3O4 nanoparticles. Dalt Trans 44, 15872–15881 (2015). https://doi.org/10.1039/c5dt01509j

    Article  CAS  Google Scholar 

  24. F.A. Grant, Use of Complex Conductivity in the Representation of Dielectric Phenomena. J Appl Phys 29, 76–76 (1958). https://doi.org/10.1063/1.1722949

    Article  Google Scholar 

  25. R. Aepuru, S. Kankash, H.S. Panda, Schottky barrier tuning in semiconducting ZnO and BaTiO3 hybrid heterostructures shows dielectric and electrical anisotropy. RSC Adv 6, 32272–32285 (2016). https://doi.org/10.1039/c6ra00841k

    Article  CAS  Google Scholar 

  26. Aepuru R, Panda HS Electric potential driven pressure sensing observation in new hollow radial ZnO and their heterostructure with carbon. 1–6

  27. P. Thomas, S. Satapathy, K. Dwarakanath, K.B.R. Varma, Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym Lett 4, 632–643 (2010). https://doi.org/10.3144/expresspolymlett.2010.78

    Article  CAS  Google Scholar 

  28. B.V. Bhaskara Rao, P. Yadav, R. Aepuru et al., Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe3O4 nano-fillers: An interface-mediated superior dielectric and EMI shielding performance. Phys Chem Chem Phys 17, 18353–18363 (2015). https://doi.org/10.1039/c5cp02476e

    Article  CAS  Google Scholar 

  29. C. Behera, R.N.P. Choudhary, P.R. Das, Development of multiferroic polymer nanocomposite from PVDF and (Bi0.5Ba0.25Sr0.25)(Fe0.5Ti0.5)O3. J Mater Sci: Mater Electron 28, 2586–2597 (2017). https://doi.org/10.1007/s10854-016-5834-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author R.A gratefully acknowledges the FONDECYT Postdoctoral Project No.: 3180172, Government of Chile, Santiago, for the financial assistance.

Funding

This study was funded by The National Fund for Scientific and Technological Development (FONDECYT) Project: 3180172.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Radhamanohar Aepuru or Mangalaraja Ramalinga Viswanathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aepuru, R., Gaikwad, V.M., Udayabhaskar, R. et al. Enhanced dielectric properties and relaxation behavior in double perovskite-polymer-based flexible 0–3 nanocomposite films. J Mater Sci: Mater Electron 31, 13477–13486 (2020). https://doi.org/10.1007/s10854-020-03902-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03902-w

Navigation