Skip to main content
Log in

Drastic modification of low temperature thermoelectric properties of Na-doped Bi2Sr2Co2Oy ceramics prepared via laser floating zone technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, Bi2Sr2−xNaxCo2Oy (x = 0.0, 0.05, 0.075, 0.10, and 0.15) ceramic powders have been fabricated via the classical ceramic route, followed by a texturing process through the laser floating zone technique. XRD patterns show the thermoelectric phase as the major one. In addition, Na-substitution reduces the amount of secondary phases, when compared to the pure sample. SEM observations point out that grain orientation is significantly improved when Na-content is increased. Na-substitution reduces electrical resistivity from 35 (in pure samples) to 19.6 mΩ cm (in Na = 0.05 ones) at around room temperature, while Seebeck coefficient is, approximately, twice measured in Na-free. On the other hand, thermal conductivity is slightly lower in undoped samples (0.83 W/K m), when compared to the Na-substituted ones (1.10–1.40 W/K m) at room temperature, due to their lower electrical conductivity. Finally, ZT values are higher when the Na-content is increased, reaching 0.022 at around 400 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D.M. Rowe, in Thermoelectrics Handbook: Macro to Nano, 1st edn., ed. by D.M. Rowe (CRC Press, Boca Raton, 2006), pp. 1–3

    Google Scholar 

  2. A.A. Yaroshevsky, Abundances of chemical elements in the Earth’s crust. Geochem. Int. 44, 48–55 (2006)

    Article  Google Scholar 

  3. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, M. Mohamad, A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sust. Energy Rev. 30, 337–355 (2014)

    Article  Google Scholar 

  4. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685 (1997)

    Article  CAS  Google Scholar 

  5. S.W. Li, R. Funahashi, I. Matsubara, K. Ueno, H. Yamada, High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 9, 1659 (1999)

    Article  CAS  Google Scholar 

  6. A. Maignan, S. Hebert, M. Hervieu, C. Michel, D. Pelloquin, D. Khomskii, Magnetoresistance and magnetothermopower properties of Bi/Ca/Co/O and Bi(Pb)/Ca/Co/O misfit layer cobaltites. J. Phys. Condens. Matter 15, 2711 (2003)

    Article  CAS  Google Scholar 

  7. R. Funahashi, I. Matsubara, S. Sodeoka, Thermoelectric properties of Bi2Sr2Co2Ox polycrystalline materials. Appl. Phys. Lett. 76, 2385 (2000)

    Article  CAS  Google Scholar 

  8. H. Wang, C.L. Wang, Thermoelectric properties of Yb-doped La0.1Sr0.9TiO3 ceramics at high temperature. Ceram. Int. 39, 941–946 (2013)

    Article  CAS  Google Scholar 

  9. Y.H. Zhu, W.B. Su, J. Liu, Y.C. Zhou, J. Li, X. Zhang, Y. Du, C.L. Wang, Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics. Ceram. Int. 41, 1535–1539 (2015)

    Article  CAS  Google Scholar 

  10. Y. Miyazaki, Crystal structure and thermoelectric properties of the misfit-layered cobalt oxides. Solid State Ion. 172, 463 (2004)

    Article  CAS  Google Scholar 

  11. H. Leligny, D. Grebille, O. Perez, A.C. Masset, M. Hervieu, B. Raveau, A five-dimensional structural investigation of the misfit layer compound [Bi0.87SrO2]2[CoO2]1.82. Acta Cryst. B 56, 173 (2000)

    Article  Google Scholar 

  12. H.S. Hao, Q.L. He, L.M. Zhao, Thermoelectric properties of Cu-substituted Bi2Ca2Co2Oy misfit oxides. Adv. Mater. Res. 284–286, 2263 (2011)

    Article  Google Scholar 

  13. G. Constantinescu, M.A. Torres, S.H. Rasekh, J.C. Diez, M.A. Madre, A. Sotelo, Effect of Sr substitution for Ca on the Ca3Co4O9 thermoelectric properties. J. Alloys Compd. 577, 511–515 (2013)

    Article  CAS  Google Scholar 

  14. N. Sun, S.T. Dong, B.B. Zhang, Y.B. Chen, J. Zhou, S.T. Zhang, Z.B. Gu, S.H. Yao, Y.F. Chen, Intrinsically modified thermoelectric performance of alkaline-earth isovalently substituted [Bi2AE2O4][CoO2]y single crystals. J. Appl. Phys. 114, 043705 (2013)

    Article  Google Scholar 

  15. Y. Zhang, J. Zhang, Q. Lu, Synthesis of highly textured Ca3Co4O9 ceramics by spark plasma sintering. Ceram. Int. 33, 1305 (2007)

    Article  CAS  Google Scholar 

  16. H. Itahara, C. Xia, J. Sugiyama, T. Tani, Fabrication of textured thermoelectric layered cobaltites with various rock salt-type layers by using β-Co(OH)2 platelets as reactive templates. J. Mater. Chem. 14, 61 (2004)

    Article  CAS  Google Scholar 

  17. J.G. Noudem, D. Kenfaui, D. Chateigner, M. Gomina, Granular and Lamellar thermoelectric oxides consolidated by spark plasma sintering. J. Korean Inst. Electr. Electron. Mater. Eng. 40, 1100 (2011)

    CAS  Google Scholar 

  18. N.M. Ferreira, Sh Rasekh, F.M. Costa, M.A. Madre, A. Sotelo, J.C. Diez, M.A. Torres, New method to improve the grain alignment and performance of thermoelectric ceramics. Mater. Lett. 83, 144–147 (2012)

    Article  CAS  Google Scholar 

  19. A. Sotelo, Sh Rasekh, G. Constantinescu, M.A. Torres, M.A. Madre, J.C. Diez, Improvement of textured Bi1.6Pb0.4Sr2Co1.8Ox thermoelectric performances by metallic Ag additions. Ceram. Int. 39, 1597–1602 (2013)

    Article  CAS  Google Scholar 

  20. S.H. Rasekh, F.M. Costa, N.M. Ferreira, M.A. Torres, M.A. Madre, J.C. Diez, A. Sotelo, Use of laser technology to produce high thermoelectric performances in Bi2Sr2Co1.8Ox. Mater. Design 75, 143 (2015)

    Article  CAS  Google Scholar 

  21. E. Combe, R. Funahashi, T. Barbier, F. Azough, R. Freer, Decreased thermal conductivity in Bi2Sr2Co2Ox bulk materials prepared by partial melting. J. Mater. Res. 31, 1296 (2016)

    Article  CAS  Google Scholar 

  22. M. Kato, Y. Goto, K. Umehara, K. Hirota, I. Terasaki, Synthesis and physical properties of Bi–Sr–Co–oxides with 2D-triangular Co layers intercalated by iodine. Phys. B 378–380, 1062–1063 (2006)

    Article  Google Scholar 

  23. K. Sugiura, M. Yamauchi, K. Tanimoto, Y. Yoshitani, Evaluation of volatile behaviour and the volatilization volume of molten salt in DIR-MCFC by using the image measurement technique. J. Power Sour. 145, 199 (2005)

    Article  CAS  Google Scholar 

  24. F.M. Costa, N.M. Ferreira, S.H. Rasekh, A.J.S. Fernandes, M.A. Torres, M.A. Madre, J.C. Diez, A. Sotelo, Very large superconducting currents induced by growth tailoring. Cryst. Growth Des. 15, 2094 (2015)

    Article  CAS  Google Scholar 

  25. J. Sugiyama, H. Itahara, T. Tani, J.H. Brewer, E.J. Ansaldo, Magnetism of layered cobalt oxides investigated by muon spin rotation and relaxation. Phys. Rev. B 66, 134413 (2002)

    Article  Google Scholar 

  26. Y. Huang, B. Zhao, R. Ang, S. Lin, Z. Huang, S. Tan, Y. Liu, W. Song, Y. Sun, Enhanced thermoelectric performance and room-temperature spin-state transition of Co4+ ions in the Ca3Co4−xRhxO9 system. J. Phys. Chem. C 117, 11459 (2013)

    Article  CAS  Google Scholar 

  27. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, London, 1971)

    Google Scholar 

  28. W. Koshibae, K. Tsuitsui, S. Maekawa, Thermopower in cobalt oxides. Phys. Rev. B 62, 6869 (2000)

    Article  CAS  Google Scholar 

  29. L.H. Yin, R. Ang, L.J. Li, B.C. Zhao, Y.K. Fu, X.B. Zhu, Z.R. Yang, W.H. Song, Y.P. Sun, Thermoelectric properties of sol–gel derived cobaltite Bi2Ca2.4Co2Oy. Phys. B 406, 2914 (2011)

    Article  CAS  Google Scholar 

  30. Y. Wang, Y. Sui, X.J. Wang, W.H. Su, X.Y. Liu, Enhanced high temperature thermoelectric characteristics of transition metals doped Ca3Co4O9+δ by cold high pressure fabrication. J. Appl. Phys. 107, 033708 (2010)

    Article  Google Scholar 

  31. J. Lingner, R. Funahashi, E. Combe, M. Letz, G. Jakob, Thermoelectric sintered glass-ceramics with a Bi2Sr2Co2Ox phase. Appl. Phys. A 120, 59 (2015)

    Article  CAS  Google Scholar 

  32. K. Rubesova, T. Hlasek, V. Jakes, S. Huber, J. Hejtmanek, D. Sedmidubsky, Effect of a powder compaction process on the thermoelectric properties of Bi2Sr2Co1.8Ox ceramics. J. Eur. Ceram. Soc. 35, 525 (2015)

    Article  CAS  Google Scholar 

  33. G.Ç. Karakaya, B. Özçelik, M.A. Torres, M.A. Madre, A. Sotelo, Effect of Na-doping on thermoelectric and magnetic performances of textured Bi2Sr2Co2Oy ceramics. J. Eur. Ceram. Soc. 38, 515 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Research Fund of Çukurova University, Adana, Turkey, under grant contracts no: FDK-2016-6105 and FBA-2019-12034. M. A. Madre and A. Sotelo wish to thank the Gobierno de Aragón-FEDER (Research Group T 54-17 R), and the Spanish MINECO-FEDER (MAT2017-82183-C3-1-R) for financial support. The use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Çetin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetin, G., Özçelik, B., Gürsul, M. et al. Drastic modification of low temperature thermoelectric properties of Na-doped Bi2Sr2Co2Oy ceramics prepared via laser floating zone technique. J Mater Sci: Mater Electron 31, 15558–15564 (2020). https://doi.org/10.1007/s10854-020-04119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04119-7

Navigation