Skip to main content
Log in

Tuning thermoelectric properties of Ca0.9Gd0.1MnO3 by laser processing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Donor-doped CaMnO3 is an n-type semiconductor with perovskite structure, being considered as a potential n-type leg in thermoelectric modules. This oxide presents stability at high temperatures and allows tuning the relevant electrical and thermal transport properties through doping. In this work, Ca0.9Gd0.1MnO3 precursors have been prepared to produce fibres through the laser floating zone technique using different pulling rates. However, as-grown fibres did not present thermoelectric properties due to the presence of high amounts of secondary phases, leading to very high electrical resistivity values. The results have highlighted the importance of annealing procedures to reduce electrical resistivity, due to the decrease of secondary phases amount, and producing promising thermoelectric performances. The annealed samples present higher ZT values when the growth rate is decreased, reaching around 0.22 for the lowest growth rate, which is very close to the best values reported in the literature for these materials. Moreover, this procedure possesses an additional advantage considering that these samples can be directly used as n-type legs in thermoelectric modules for high-temperature applications. However, further studies should be made to determine the optimal amount of dopant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Walia, S. Balendhran, H. Nili, S. Zhuiykov, G. Rosengarten, Q.H. Wang, M. Bhaskaran, S. Sriram, M.S. Strano, K. Kalantar-zadeh, Transition metal oxides—thermoelectric properties. Prog. Mater. Sci. 58, 1443–1489 (2013). https://doi.org/10.1016/j.pmatsci.2013.06.003

    Article  CAS  Google Scholar 

  2. F.P. Zhang, Q.M. Lu, X. Zhang, J.X. Zhang, First principle investigation of electronic structure of CaMnO3 thermoelectric compound oxide. J. Alloys Compd. 509, 542–545 (2011). https://doi.org/10.1016/j.jallcom.2010.09.102

    Article  CAS  Google Scholar 

  3. A. Sotelo, M. Torres, M. Madre, J. Diez, Effect of synthesis process on the densification, microstructure, and electrical properties of Ca0.9Yb0.1MnO3 ceramics. Int. J. Appl. Ceram. Technol. 14, 1190–1196 (2017). https://doi.org/10.1111/ijac.12711

    Article  CAS  Google Scholar 

  4. N.M. Ferreira, M.C. Ferro, A.R. Sarabando, A. Ribeiro, A. Davarpanah, V. Amaral, M.A. Madre, A.V. Kovalevsky, M.A. Torres, F.M. Costa, A. Sotelo, Improvement of thermoelectric properties of Ca0.9Gd0.1MnO3 by powder engineering through K2CO3 additions. J. Mater. Sci. 54, 3252–3261 (2018). https://doi.org/10.1007/s10853-018-3058-x~

    Article  Google Scholar 

  5. A. Bhaskar, C.J. Liu, J.J. Yuan, Thermoelectric properties of Ca1−xGdxMnO3−δ (0.00, 0.02, and 0.05) Systems. Sci. World J. (2012). https://doi.org/10.1100/2012/149670

    Article  Google Scholar 

  6. M. Rosić, L. Kljaljević, D. Jordanov, M. Stoiljković, V. Kusigerski, V. Spasojević, B. Matović, Effects of sintering on the structural, microstructural and magnetic properties of nanoparticle manganite Ca1-xGdxMnO3 (x=0.05; 0.1; 0.15; 0.2). Ceram. Int. 41, 14964–14972 (2015). https://doi.org/10.1016/j.ceramint.2015.08.041

    Article  CAS  Google Scholar 

  7. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, H. Arai, Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1) MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J. Solid State Chem. 120, 105–111 (1995)

    Article  CAS  Google Scholar 

  8. G.J. Xu, R. Funahashi, I. Matsubara, M. Shikano, Y.Q. Zhou, High-temperature thermoelectric properties of the Ca1−xBixMnO3 system. J. Mater. Res. 17, 1092–1095 (2002)

    Article  CAS  Google Scholar 

  9. R. Kabir, R. Tian, Role of Bi doping in thermoelectric properties of CaMnO3. J. AlloyS Compd. 628, 347–351 (2015). https://doi.org/10.1016/j.jallcom.2014.12.141

    Article  CAS  Google Scholar 

  10. H. Wang, W. Su, J. Liu, C. Wang, Recent development of n-type perovskite thermoelectrics. J Materiomics 2, 225–236 (2016). https://doi.org/10.1016/j.jmat.2016.06.005

    Article  Google Scholar 

  11. N.M. Ferreira, N.R. Neves, M.C. Ferro, M.A. Torres, M.A. Madre, F.M. Costa, A. Sotelo, A.V. Kovalevsky, Growth rate effects on the thermoelectric performance of CaMnO3-based ceramics. J. Eur. Ceram. Soc. 39, 4184 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.06.011

    Article  CAS  Google Scholar 

  12. F.P. Carreira, N.M. Ferreira, A.V. Kovalevsky, Laser processing as a tool for designing donor-substituted calcium manganite-based thermoelectrics. J. AlloyS Compd. 829, 154466 (2020). https://doi.org/10.1016/j.jallcom.2020.154466

    Article  CAS  Google Scholar 

  13. Y. Wang, Y. Sui, High temperature thermoelectric response of electron-doped CaMnO3. Chem. Mater. 21, 4653–4660 (2009). https://doi.org/10.1021/cm901766y

    Article  CAS  Google Scholar 

  14. D. Enescu, Thermoelectric energy harvesting: basic principles and applications, in Green energy advances, ed. by D. Enescu (Intechopen, London, 2019). https://doi.org/10.5772/intechopen.83495

    Chapter  Google Scholar 

  15. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–638 (2008). https://doi.org/10.1126/science.1156446

    Article  CAS  Google Scholar 

  16. F. Giovannelli, C. Chen, P. Diaz-Chao, E. Guilmeau, F. Delorme, Thermal conductivity and stability of Al-doped ZnO nanostructured ceramics. J. Eur. Ceram. Soc. 38, 5015–5020 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.07.032

    Article  CAS  Google Scholar 

  17. N. Wang, H. Chen, H. He, W. Norimatsu, M. Kusunoki, Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity. Sci. Rep. 3, 03449 (2013). https://doi.org/10.1038/srep03449

    Article  Google Scholar 

  18. R. Löhnert, M. Stelter, J. Töpfer, Evaluation of soft chemistry methods to synthesize Gd-doped CaMnO3−δ with improved thermoelectric properties. Mater. Sci. Eng. B 223, 185–193 (2017). https://doi.org/10.1016/j.mseb.2017.06.014

    Article  CAS  Google Scholar 

  19. S. Rasekh, M.A. Madre, A. Sotelo, E. Guilmeau, S. Marinel, J.C. Diez, Effect of synthetic methods on the thermoelectrical properties of textured Bi2Ca2 Co1.7Ox ceramics. Bol. Soc. Esp. Ceram. V. 49(1), 89–94 (2010)

    CAS  Google Scholar 

  20. https://materialsproject.org/materials/mp-1004038/. Accessed Dec 2019

  21. P. Villars, Ca2MnO4 crystal structure, Inorganic solid phases (Springer, Heidelberg, 2016). https://materials.springer.com/isp/crystallographic/docs/sd_1102735. Accessed Aug 2020

    Google Scholar 

  22. M. Mouyane, B. Itaalit, J. Bernard, D. Houivet, J.G. Noudem, Flash combustion synthesis of electron doped-CaMnO3 thermoelectric oxides. Powder Technol. 264, 71–77 (2014). https://doi.org/10.1016/j.powtec.2014.05.022

    Article  CAS  Google Scholar 

  23. J.G. Noudem, D. Kenfaui, S. Quetel-Weben, C.S. Sanmathi, R. Retoux, M. Gomina, Spark plasma sintering of n-Type thermoelectric Ca0.95Sm0.05MnO3. J Am. Ceram. Soc. 94, 2608–2612 (2011). https://doi.org/10.1111/j.1551-2916.2011.04465.x

    Article  CAS  Google Scholar 

  24. S. Quetel-Weben, R. Retoux, J.G. Noudem, Thermoelectric Ca0.9Yb0.1MnO3−δ grain growth controlled by spark plasma sintering. J. Eur. Ceram Soc. 33, 1755–1762 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.02.003

    Article  CAS  Google Scholar 

  25. R. Kabir, D. Wang, T. Zhang, R. Tian, R. Donelson, T.T. Tan, S. Li, Tunable thermoelectric properties of Ca0.9Yb0.1MnO3 through controlling the particle size via ball mill processing. Ceram. Int. 40, 16701–16706 (2014). https://doi.org/10.1016/j.ceramint.2014.08.033

    Article  CAS  Google Scholar 

  26. H. Wang, C. Wang, Synthesis of Dy doped Yb0.1Ca0.9MnO3 ceramics with a high relative density and their thermoelectric properties. Mater. Res. Bull. 47, 2252–2256 (2012). https://doi.org/10.1016/j.materresbull.2012.05.061

    Article  CAS  Google Scholar 

  27. Y. Zhu, C. Wang, H. Wang, W. Su, J. Liu, J. Li, Influence of Dy/Bi dual doping on thermoelectric performance of CaMnO3 ceramics. Mater. Chem. Phys. 144, 385–389 (2014). https://doi.org/10.1016/j.matchemphys.2014.01.006

    Article  CAS  Google Scholar 

  28. J.W. Park, D.H. Kwak, S.H. Yoon, S.C. Choi, Thermoelectric properties of Bi, Nb co-substituted CaMnO3 at high temperature. J. Alloys Compd. 487, 550–555 (2009). https://doi.org/10.1016/j.jallcom.2009.08.012

    Article  CAS  Google Scholar 

  29. M. Molinari, D.A. Tompsett, S.C. Parker, F. Azoughb, R. Freerb, Structural, electronic and thermoelectric behaviour of CaMnO3 and CaMnO(3-δ). J. Mater. Chem. A 2, 14109 (2014). https://doi.org/10.1039/c4ta01514b

    Article  CAS  Google Scholar 

  30. D. Srivastava, F. Azough, R. Freer, E. Combe, R. Funahashi, D.M. Kepaptsoglou, Q.M. Ramasse, M. Molinari, S.R. Yeandel, J.D. Barand, S.C. Parker, Crystal structure and thermoelectric properties of Sr–Mo substituted CaMnO3: a combined experimental and computational study. J. Mater. Chem. C 3, 12245 (2015). https://doi.org/10.1039/c5tc02318a

    Article  CAS  Google Scholar 

  31. G. Constantinescu, Sh Rasekh, M.A. Torres, J.C. Diez, M.A. Madre, A. Sotelo, Effect of Sr substitution for Ca on the Ca3Co4O9 thermoelectric properties. J. Alloys Compd. 577, 511–515 (2013). https://doi.org/10.1016/j.jallcom.2013.07.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of i3N (UID/CTM/50025/2019) and CICECO-Aveiro Institute of Materials (UID/CTM/50011/2019), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. This work is funded by national funds (OE), through FCT—Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. M. A. Madre and A. Sotelo recognize the MINECO-FEDER (MAT2017-82183-C3-1-R) and Gobierno de Aragon-FEDER (Research Group T 54-17 R) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Ferreira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, N.M., Sarabando, A.R., Ferro, M.C. et al. Tuning thermoelectric properties of Ca0.9Gd0.1MnO3 by laser processing. J Mater Sci: Mater Electron 31, 18913–18922 (2020). https://doi.org/10.1007/s10854-020-04428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04428-x

Navigation