Skip to main content
Log in

Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, amorphous tin oxide thin films were deposited by non-reactive radio frequency magnetron sputtering. A ceramic \({\text{SnO}}_2\) target was used, while different working pressures were employed. The target to substrate distance was fixed to 17 cm, and the substrate was not intentionally heated. The properties of \({\text{SnO}}_2\) (thickness, refractive index dispersion, optical band gap, resistivity, free carriers concentration, carriers mobility, carriers majority type and their scattering time) have been inferred from spectroscopic ellipsometry, conventional UV-Vis spectroscopy and specific Hall electrical measurements. Thickness and refractive index are slightly dependent on the deposition conditions, while the optical band gap, free carriers concentration and their mobilities are changing from sample to sample. The evolution of the optical band gap and carriers concentration is correlated to the active defects concentration. Amorphous \({\text{SnO}}_2\) films grown at 0.4 Pa have the lowest resistivity of \(0.86\,\Omega \, \hbox {cm}\), a carrier concentration of \(1.05 \times 10^{18}\,\hbox {cm}^{-3}\), and a Hall mobility of \(6.8\,\hbox {cm}^{2}\)/ Vs. The average optical transmittance in visible spectrum is 76%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.M. Niang, J. Cho, S. Heffernan, W.I. Milne, A.J. Flewitt, J. Appl. Phys. 120, 8 (2016). https://doi.org/10.1063/1.4961608

    Article  CAS  Google Scholar 

  2. X. Yu, T.J. Marks, A. Facchetti, Nat. Mater. 15(4), 383 (2016). https://doi.org/10.1038/nmat4599

    Article  CAS  Google Scholar 

  3. K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Jpn. J. Appl. Phys. 45, 4303 (2006). https://doi.org/10.1143/jjap.45.4303

    Article  CAS  Google Scholar 

  4. J.F. Wager, B. Yeh, R.L. Hoffman, D.A. Keszler, Curr. Opin. Solid State Mater. Sci. 18, 53 (2014). https://doi.org/10.1016/j.cossms.2013.07.002

    Article  CAS  Google Scholar 

  5. I. Noviyana, A.D. Lestari, M. Putri, M.S. Won, J.S. Bae, Y.W. Heo, H.Y. Lee, Materials 10, 702 (2017). https://doi.org/10.3390/ma10070702

    Article  CAS  Google Scholar 

  6. Q.H. Zhang, L.V. Saraf, F. Hua, Nanotechnology 18, 195204 (2007). https://doi.org/10.1088/0957-4484/18/19/195204

    Article  CAS  Google Scholar 

  7. K.J. Saji, A.P.R. Mary, ECS J. Solid State Sci. Technol. 4, Q101 (2015). https://doi.org/10.1149/2.0091509jss

    Article  CAS  Google Scholar 

  8. C. Besleaga, G.E. Stan, I. Pintilie, P. Barquinha, E. Fortunato, R. Martins, Appl. Surf. Sci. 379, 270 (2016). https://doi.org/10.1016/j.apsusc.2016.04.083

    Article  CAS  Google Scholar 

  9. J. Barbé, M.L. Tietze, M. Neophytou, B. Murali, E. Alarousu, A. El Labban, M. Abulikemu, W. Yue, O.F. Mohammed, I. McCulloch, A. Amassian, S. Del Gobbo, A.C.S. Appl, Mater. Interfaces 9, 11828 (2017). https://doi.org/10.1021/acsami.6b13675

    Article  CAS  Google Scholar 

  10. Y. Lee, S. Lee, G. Seo, S. Paek, K.T. Cho, A.J. Huckaba, M. Calizzi, D.W. Choi, J.S. Park, D. Lee, H.J. Lee, A.M. Asiri, M.K. Nazeeruddin, Adv. Sci. 5, 1800130 (2018). https://doi.org/10.1002/advs.201800130

    Article  CAS  Google Scholar 

  11. M. Xie, X. Sun, S.M. George, C.G. Zhou, J. Lian, Y. Zhou, A.C.S. Appl, Mater. Interfaces 7, 27735 (2015). https://doi.org/10.1021/acsami.5b08719

    Article  CAS  Google Scholar 

  12. L.L. Fan, X.F. Li, B. Yan, X.J. Li, D.B. Xiong, D. Li, H. Xu, X.F. Zhang, X.L. Sun, Appl. Energy 175, 529 (2016). https://doi.org/10.1016/j.apenergy.2016.02.094

    Article  CAS  Google Scholar 

  13. X. Liu, H. Ning, J. Chen, W. Cai, S. Hu, R. Tao, Y. Zeng, Z. Zheng, R. Yao, M. Xu, L. Wang, L. Lan, J. Peng, Appl. Phys. Lett. 108, 11 (2016). https://doi.org/10.1063/1.4944639

    Article  CAS  Google Scholar 

  14. D.B. Ruan, P.T. Liu, Y.H. Chen, Y.C. Chiu, T.C. Chien, M.C. Yu, K.J. Gan, S.M. Sze, Adv. Electron. Mater. 5(3), 1800824 (2019). https://doi.org/10.1002/aelm.201800824

    Article  CAS  Google Scholar 

  15. Y. Tang, L. Gao, J. Liu, S.H. Bo, Z. Xie, J. Wei, Z. Zhou, J. Mater. Chem. A 8, 18087–18093 (2020). https://doi.org/10.1039/C9TA13347J

    Article  CAS  Google Scholar 

  16. F.J. Arlinghaus, J. Phys. Chem. Solids 35, 931 (1974). https://doi.org/10.1016/S0022-3697(74)80102-2

    Article  CAS  Google Scholar 

  17. Z.M. Jarzebski, J.P. Morton, J. Electrochem. Soc. 123, 333C (1976). https://doi.org/10.1149/1.2132647

    Article  CAS  Google Scholar 

  18. J. Rockenberger, U. zum Felde, M. Tischer, L. Trőger, M. Haase, H. Weller, J. Chem. Phys. 112, 4296 (2000). https://doi.org/10.1063/1.480975

    Article  CAS  Google Scholar 

  19. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005). https://doi.org/10.1016/j.progsurf.2005.09.002

    Article  CAS  Google Scholar 

  20. S. Saipriya, M. Sultan, R. Singh, Physica B 406, 812 (2011). https://doi.org/10.1016/j.physb.2010.12.003

    Article  CAS  Google Scholar 

  21. A. Togo, F. Oba, I. Tanaka, K. Tatsumi, Phys. Rev. B 74, 1098–10121 (2006). https://doi.org/10.1103/PhysRevB.74.195128

    Article  CAS  Google Scholar 

  22. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 93, 3183–3196 (2008). https://doi.org/10.1063/1.2964197

    Article  CAS  Google Scholar 

  23. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.H.K. Park, C.S. Hwang, R. Martins, Appl. Phys. Lett. 97, 052105 (2010). https://doi.org/10.1063/1.3469939

    Article  CAS  Google Scholar 

  24. E. Chan y Díaz, J.M. Camacho, A. Duarte-Moller, R. Castro-Rodríguez, P. Bartolo-Pérez, J. Alloys Compd. 508, 342 (2010). https://doi.org/10.1016/j.jallcom.2010.08.076

    Article  CAS  Google Scholar 

  25. Ç. Kiliç, A. Zunger, Phys. Rev. Lett. 88, 171–198 (2002). https://doi.org/10.1103/PhysRevLett.88.095501

    Article  CAS  Google Scholar 

  26. S. Samson, C.G. Fonstad, J. Appl. Phys. 44, 4618 (1973). https://doi.org/10.1063/1.1662011

    Article  CAS  Google Scholar 

  27. H. Kim, C.M. Gilmore, A. Piqué, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. 86, 6451 (1999). https://doi.org/10.1063/1.371708

    Article  CAS  Google Scholar 

  28. T. Kamiya, H. Hosono, Int. J. Appl. Ceram. Technol. 2, 285 (2005). https://doi.org/10.1111/j.1744-7402.2005.02033.x

    Article  CAS  Google Scholar 

  29. P. Shewale, K. Ung Sim, Y.B. Kim, J. Kim, A. Moholkar, M. Uplane, J. Lumin. 139, 113 (2013). https://doi.org/10.1016/j.jlumin.2013.01.021

    Article  CAS  Google Scholar 

  30. C. Sankar, V. Ponnuswamy, M. Manickam, R. Mariappan, R. Suresh, Appl. Surf. Sci. 349, 931 (2015). https://doi.org/10.1016/j.apsusc.2015.04.198

    Article  CAS  Google Scholar 

  31. S. Ingole, S. Navale, Y. Navale, D. Bandgar, F. Stadler, R. Mane, N. Ramgir, S. Gupta, D. Aswal, V. Patil, J. Colloid Interface Sci. 493, 162 (2017). https://doi.org/10.1016/j.jcis.2017.01.025

    Article  CAS  Google Scholar 

  32. Y. Li, O.R. Musaev, J.M. Wrobel, M.B. Kruger, Appl. Phys. A 124(7), 499 (2018). https://doi.org/10.1007/s00339-018-1919-4

    Article  CAS  Google Scholar 

  33. N. Talebian, F. Jafarinezhad, Ceram. Int. 39(7), 8311 (2013). https://doi.org/10.1016/j.ceramint.2013.03.101

    Article  CAS  Google Scholar 

  34. R. Djamil, K. Aicha, A. Souifi, D. Fayçal, Thin Solid Films 623, 1 (2017). https://doi.org/10.1016/j.tsf.2016.12.035

    Article  CAS  Google Scholar 

  35. C. Kim, S. Cho, S. Kim, S.E. Kim, ECS J. Solid State Sci. Technol. 6(12), P765 (2017). https://doi.org/10.1149/2.0061712jss

    Article  CAS  Google Scholar 

  36. A.K. Gangwar, R. Godiwal, J. Jaiswal, V. Baloria, P. Pal, G. Gupta, P. Singh, Vacuum 177, 109353 (2020). https://doi.org/10.1016/j.vacuum.2020.109353

    Article  CAS  Google Scholar 

  37. Y. Tao, B. Zhu, Y. Yang, J. Wu, X. Shi, Mater. Chem. Phys. 250, 123129 (2020). https://doi.org/10.1016/j.matchemphys.2020.123129

    Article  CAS  Google Scholar 

  38. H.B. Lee, N. Kumar, M.M. Ovhal, Y.J. Kim, Y.M. Song, J. Kang, Adv. Funct. Mater. 30(24), 2001559 (2020). https://doi.org/10.1002/adfm.202001559

    Article  CAS  Google Scholar 

  39. Z. Guo, A.K. Jena, I. Takei, G.M. Kim, M.A. Kamarudin, Y. Sanehira, A. Ishii, Y. Numata, S. Hayase, T. Miyasaka, J. Am. Chem. Soc. 142, 9725–9734 (2020). https://doi.org/10.1021/jacs.0c02227

    Article  CAS  Google Scholar 

  40. M. Anwar, S.A. Siddiqi, I.M. Ghauri, Int. J. Mod. Phys. B 21, 2017 (2007). https://doi.org/10.1142/S0217979207037144

    Article  CAS  Google Scholar 

  41. S.J. Ikhmayies, Int. J. Mater. Chem. 2, 173 (2012). https://doi.org/10.5923/j.ijmc.20120204.10

    Article  CAS  Google Scholar 

  42. Y. Caglar, S. Ilican, M. Caglar, Eur. Phys. J. B 58, 251 (2007). https://doi.org/10.1140/epjb/e2007-00227-y

    Article  CAS  Google Scholar 

  43. J. Ren, K. Li, J. Yang, D. Lin, H. Kang, J. Shao, R. Fu, Q. Zhang, Sci. China Mater. 62(6), 803 (2019). https://doi.org/10.1007/s40843-018-9380-8

    Article  CAS  Google Scholar 

  44. R. Mientus, M. Weise, S. Seeger, R. Heller, K. Ellmer, Coatings 10(3), 204 (2020). https://doi.org/10.3390/coatings10030204

    Article  CAS  Google Scholar 

  45. A. De, S. Ray, J. Phys. D-Appl. Phys. 24, 719 (1991). https://doi.org/10.1088/0022-3727/24/5/014

    Article  CAS  Google Scholar 

  46. H.S. So, J.W. Park, D.H. Jung, K.H. Ko, H. Lee, J. Appl. Phys. 118, 085303 (2015). https://doi.org/10.1063/1.4929487

    Article  CAS  Google Scholar 

  47. B.S. Tosun, R.K. Feist, A. Gunawan, K.A. Mkhoyan, S.A. Campbell, E.S. Aydil, Thin Solid Films 520, 2554 (2012). https://doi.org/10.1016/j.tsf.2011.10.169

    Article  CAS  Google Scholar 

  48. S.E.K. Kim, M. Oliver, Met. Mater.-Int. 16, 441 (2010). https://doi.org/10.1007/s12540-010-0614-6

    Article  Google Scholar 

  49. M. Al-Mansoori, S. Al-Shaibani, A. Al-Jaeedi, J. Lee, D. Choi, F.S. Hasoon, AIP Adv. 7, 125105 (2017). https://doi.org/10.1063/1.5001883

    Article  CAS  Google Scholar 

  50. S. Bansal, D.K. Pandya, S.C. Kashyap, Thin Solid Films 524, 30 (2012). https://doi.org/10.1016/j.tsf.2012.09.062

    Article  CAS  Google Scholar 

  51. T. Matsumura, Y. Sato, J. Mod. Phys. 1, 340 (2010). https://doi.org/10.4236/jmp.2010.15048

    Article  CAS  Google Scholar 

  52. R. Kinder, M. Mikolášek, D. Donoval, J. Kováč, M. Tlaczala, J. Electr. Eng. 64, 106 (2013). https://doi.org/10.2478/jeec-2012-0015

    Article  Google Scholar 

  53. C.R. Nave, Hyperphysics. http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/menfre.html

  54. K. Wasa, M. Kitabatake, H. Adachi, Thin Film Materials Technology: Sputtering of Compound Materials (Springer, Berlin, 2004)

    Google Scholar 

  55. D. Depla, S. Mahieu, J.E. Greene, in Handbook of Deposition Technologies for Films and Coatings, ed. by P.M. Martin (Elsevier, 2010), chap. 5, pp. 253–296

  56. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B-Basic Solid State Phys. 15, 627 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  57. E.A. Davis, N.F. Mott, Philos. Mag. 22, 0903 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  58. T. Kamiya, K. Nomura, M. Hirano, H. Hosono, Phys. Status Solidi C 5, 3098 (2008). https://doi.org/10.1002/pssc.200779300

    Article  CAS  Google Scholar 

  59. A.R. Zanatta, M. Mulato, I. Chambouleyron, J. Appl. Phys. 84, 5184 (1998). https://doi.org/10.1063/1.368768

    Article  CAS  Google Scholar 

  60. A.L. Cauchy, Bull. Des. Sci. Math. 14 (1830)

  61. A.C. Galca, V. Stancu, M.A. Husanu, C. Dragoi, N.G. Gheorghe, L. Trupina, M. Enculescu, E. Vasile, Appl. Surf. Sci. 257, 5938 (2011). https://doi.org/10.1016/j.apsusc.2011.01.056

    Article  CAS  Google Scholar 

  62. S. Polosan, A.C. Galca, M. Secu, Solid State Sci. 13, 49 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.10.007

    Article  CAS  Google Scholar 

  63. A.C. Galca, G.E. Stan, L.M. Trinca, C.C. Negrila, L.C. Nistor, Thin Solid Films 524, 328 (2012). https://doi.org/10.1016/j.tsf.2012.10.015

    Article  CAS  Google Scholar 

  64. M. Jerman, Z.H. Qiao, D. Mergel, Appl. Opt. 44, 3006 (2005). https://doi.org/10.1364/AO.44.003006

    Article  CAS  Google Scholar 

  65. S.K. Tripathy, Opt. Mater. 46, 240 (2015). https://doi.org/10.1016/j.optmat.2015.04.026

    Article  CAS  Google Scholar 

  66. K. Ellmer, J. Phys. D-Appl. Phys. 34(21), 3097 (2001). https://doi.org/10.1088/0022-3727/34/21/301

    Article  CAS  Google Scholar 

  67. B. Bissig, T. Jäger, L. Ding, A.N. Tiwari, Y.E. Romanyuk, APL Mater. 3, 062802 (2015). https://doi.org/10.1063/1.4916586

    Article  CAS  Google Scholar 

  68. S. Elhalawaty, K. Sivaramakrishnan, N.D. Theodore, T.L. Alford, Thin Solid Films 518, 3326 (2010). https://doi.org/10.1016/j.tsf.2009.10.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.Z. acknowledges Romanian Ministry of Foreign Affairs and Agence universitaire de la Francophonie for the ’Eugen Ionescu’ research scholarship. All authors acknowledge the financial support of the Romanian Ministry of Research and Innovation in the framework of the Core project PN18-11.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

NZ: Conceptualization, Formal analysis, Funding acquisition, Investigation, Project administration, Validation, Visualization, Writing—original draft, Writing—review & editing. ACG: Conceptualization, Formal analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Visualization, Writing—original draft, Writing—review & editing. MSB: Conceptualization, Funding acquisition, Investigation, Supervision, Validation, Visualization, Writing—review & editing. SI: Formal analysis, Investigation, Validation, Visualization, Writing—review & editing.

Corresponding author

Correspondence to N. Ziani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziani, N., Galca, A.C., Belkaid, M.S. et al. Argon pressure dependent optoelectronic characteristics of amorphous tin oxide thin films obtained by non-reactive RF sputtering process. J Mater Sci: Mater Electron 32, 12308–12317 (2021). https://doi.org/10.1007/s10854-021-05861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05861-2

Navigation