Skip to main content
Log in

ZTIFs derived nitrogen-introduced high specific area and hierarchical porous carbon for oxygen reduction reaction

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It is of great allure to construct nitrogen-doped hierarchical porous carbon to replace Pt-based catalysts for efficient ORR. Here, nitrogen-doped hierarchical porous carbon (NHPC) was prepared by carbonizing ZTIF-1 and KOH activating. The resultant NHPC4-700 catalyst exhibits a hierarchical porous structure and high specific area (2404 m2 g−1), which promoted the exposure of enough active sites as well as simultaneously enhanced the electron transfer rate, shorten the mass transfer pathway, enhanced ionic conductivity and carbon wetting. The results are capable of remarkably improving the ORR activities of carbon materials. The NHPC4-700 catalyst exhibits a great catalytic performance with onset potential at 0.90 V and limiting current density of − 6.0 mA cm−2, which is close to commercial Pt/C electrocatalyst. Meanwhile, the NHPC4-700 catalysts had better stability and methanol resistance than that of Pt/C toward ORR. These superior electrochemical properties of the NHPC4-700 catalysts were closely related to their nitrogen-doped hierarchical porous structure and high specific area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.B. Wu, X.W. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Ad. 3, 1–2 (2017)

    Google Scholar 

  2. W.E. Winsche, K.C. Hoffman, F.J. Salzano, Hydrogen: its future role in the nation’s energy economy. Science 180, 1325–1332 (1973)

    Article  CAS  Google Scholar 

  3. J. Yang, J. Wang, L. Zhu, W. Zeng, J. Wang, Multiple hollow CeO2 spheres decorated MnO2 microflower as an efficient catalyst for oxygen reduction reaction. Mater. Lett. 234, 331–334 (2019)

    Article  CAS  Google Scholar 

  4. S. Ohyagi, T. Matsuda, Y. Iseki, T. Sasaki, C. Kaito, Effects of operating conditions on durability of polymer electrolyte membrane fuel cell Pt cathode catalyst layer. J. Power Sources 196, 3743–3749 (2011)

    Article  CAS  Google Scholar 

  5. M.W. Reed, J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)

    Article  CAS  Google Scholar 

  6. Y. He, S. Hwang, D.A. Cullen, M.A. Uddin, L. Langhorst, B. Li et al., Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: carbon-shell confinement strategy. Energy Environ. Sci. 12, 250–260 (2019)

    Article  CAS  Google Scholar 

  7. T. Tamaki, A. Yamauchi, T. Ito, H. Ohashi, T. Yamaguchi, The effect of methanol crossover on the cathode overpotential of DMFCs. Fuel Cells 11, 394–403 (2011)

    Article  CAS  Google Scholar 

  8. W. Xia, R. Zou, L. An, D. Xia, S. Guo, A metal–organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 8, 568–576 (2015)

    Article  CAS  Google Scholar 

  9. Y. Li, S. Zheng, X. Liu, P. Li, L. Sun, R. Yang et al., Conductive microporous covalent triazine-based framework for high-performance electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 57, 7992–7996 (2018)

    Article  CAS  Google Scholar 

  10. K. Babel, K. Jurewicz, KOH activated carbon fabrics as supercapacitor material. J. Phys. Chem. Solids 65, 275–280 (2004)

    Article  CAS  Google Scholar 

  11. S.G. Peera, A.K. Sahu, A. Arunchander, S.D. Bhat, J. Karthikeyan, P. Murugan, Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells. Carbon 93, 130–142 (2015)

    Article  CAS  Google Scholar 

  12. X. Qiao, S. Liao, G. Wang, R. Zheng, H. Song, X. Li, Simultaneous doping of nitrogen and fluorine into reduced graphene oxide: a highly active metal-free electrocatalyst for oxygen reduction. Carbon 99, 272–279 (2016)

    Article  CAS  Google Scholar 

  13. Y. Zhao, J. Wan, H. Yao, L. Zhang, K. Lin, L. Wang et al., Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 10, 924–931 (2018)

    Article  CAS  Google Scholar 

  14. T. Gunji, K. Sakai, Y. Suzuki, S. Kaneko, T. Tanabe, F. Matsumoto, Enhanced oxygen reduction reaction on PtPb ordered intermetallic nanoparticle/TiO2/carbon black in acidic aqueous solutions. Catal. Commun. 61, 1–5 (2015)

    Article  CAS  Google Scholar 

  15. Ç. Güldür, S. Güneş, Carbon supported Pt-based ternary catalysts for oxygen reduction in PEM fuel cells. Catal. Commun. 12, 707–711 (2011)

    Article  CAS  Google Scholar 

  16. N. Tachibana, Y. Yukawa, S. Somekawa, K. Shimanoe, La0.4Ca0.6Mn0.9Fe0.1O3 nanoparticle-dispersed nitrogen-doped porous carbon composite as an efficient oxygen reduction electrocatalyst. Catal. Commun. 131, (2019)

    Article  CAS  Google Scholar 

  17. S. Jiang, Y. Sun, H. Dai, J. Hu, P. Ni, Y. Wang et al., Nitrogen and fluorine dual-doped mesoporous graphene: a high-performance metal-free ORR electrocatalyst with a super-low HO -2 yield. Nanoscale 7, 10584–10589 (2015)

    Article  CAS  Google Scholar 

  18. D. Li, Y. Jia, G. Chang, J. Chen, H. Liu, J. Wang et al., A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chemistry 4, 2345–2356 (2018)

    Article  CAS  Google Scholar 

  19. P. Bober, M. Trchová, Z. Morávková, J. Kovářová, I. Vulić, N. Gavrilov et al., Phosphorus and nitrogen-containing carbons obtained by the carbonization of conducting polyaniline complex with phosphites. Electrochim. Acta 246, 443–450 (2017)

    Article  CAS  Google Scholar 

  20. M. Beermann, E. Holtz, E. Padgett, J.F. De Araujo, D.A. Muller, P. Strasser, Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM. Energy Environ. Sci. 12, 2476–2485 (2019)

    Article  CAS  Google Scholar 

  21. H. Wang, A. Kong, Mesoporous fluorine-doped carbon as efficient cathode material for oxygen reduction reaction. Mater. Lett. 136, 384–387 (2014)

    Article  CAS  Google Scholar 

  22. C. Wang, F. Yang, C. Xu, Y. Cao, H. Zhong, Y. Li, Sulfur-doped porous graphene frameworks as an efficient metal-free electrocatalyst for oxygen reduction reaction. Mater. Lett. 214, 209–212 (2018)

    Article  CAS  Google Scholar 

  23. Y. Zan, Z. Zhang, H. Liu, M. Dou, F. Wang, Nitrogen and phosphorus co-doped hierarchically porous carbons derived from cattle bones as efficient metal-free electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 5, 24329–24334 (2017)

    Article  CAS  Google Scholar 

  24. S. Zinatloo-Ajabshir, M.S. Morassaei, O. Amiri, M. Salavati-Niasari, Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation. Ceram. Int. 46, 6095–6107 (2020)

    Article  CAS  Google Scholar 

  25. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Recyclable magnetic ZnCo2O4-based ceramic nanostructure materials fabricated by simple sonochemical route for effective sunlight-driven photocatalytic degradation of organic pollution. Ceram. Int. 47, 8959–8972 (2021)

    Article  CAS  Google Scholar 

  26. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Schiff-base hydrothermal synthesis and characterization of Nd2O3 nanostructures for effective photocatalytic degradation of eriochrome black T dye as water contaminant. J. Mater. Sci 28, 17849–17859 (2017)

    CAS  Google Scholar 

  27. S. Zinatloo-Ajabshir, Z. Salehi, M. Salavati-Niasari, Green synthesis of Dy2Ce2O7 ceramic nanostructures using juice of Punica granatum and their efficient application as photocatalytic degradation of organic contaminants under visible light. Ceram. Int. 44, 3873–3883 (2018)

    Article  CAS  Google Scholar 

  28. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile synthesis of nanocrystalline neodymium zirconate for highly efficient photodegradation of organic dyes. J. Mol. Liq. 243, 219–226 (2017)

    Article  CAS  Google Scholar 

  29. Y. Xie, C. Zhang, X. He, J.-W. Su, T. Parker, T. White et al., Copper-promoted nitrogen-doped carbon derived from zeolitic imidazole frameworks for oxygen reduction reaction. Appl. Surf. Sci. 464, 344–350 (2019)

    Article  CAS  Google Scholar 

  30. L. Zhang, Y. Hu, J. Chen, W. Huang, J. Cheng, Y. Chen, A novel metal organic framework-derived carbon-based catalyst for oxygen reduction reaction in a microbial fuel cell. J. Power Sources 384, 98–106 (2018)

    Article  CAS  Google Scholar 

  31. L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6, 6590–6602 (2014)

    Article  CAS  Google Scholar 

  32. H. Park, S. Oh, S. Lee, S. Choi, M. Oh, Cobalt- and nitrogen-codoped porous carbon catalyst made from core–shell type hybrid metal–organic framework (ZIF-L@ZIF-67) and its efficient oxygen reduction reaction (ORR) activity. Appl. Catal. B 246, 322–329 (2019)

    Article  CAS  Google Scholar 

  33. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Enhanced visible-light-driven photocatalytic performance for degradation of organic contaminants using PbWO4 nanostructure fabricated by a new, simple and green sonochemical approach. Ultrason. Sonochem. 72, (2021)

    Article  CAS  Google Scholar 

  34. L. Wang, K. Liang, L. Deng, Y.-N. Liu, Protein hydrogel networks: a unique approach to heteroatom self-doped hierarchically porous carbon structures as an efficient ORR electrocatalyst in both basic and acidic conditions. Appl. Catal. B 246, 89–99 (2019)

    Article  CAS  Google Scholar 

  35. F. Zhou, G. Wang, F. Huang, Y. Zhang, M. Pan, Polyaniline derived N- and O-enriched high surface area hierarchical porous carbons as an efficient metal-free electrocatalyst for oxygen reduction. Electrochim. Acta 257, 73–81 (2017)

    Article  CAS  Google Scholar 

  36. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Effect of copper on improving the electrochemical storage of hydrogen in CeO2 nanostructure fabricated by a simple and surfactant-free sonochemical pathway. Ceram. Int. 46, 26548–26556 (2020)

    Article  CAS  Google Scholar 

  37. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci. 31, 17332–17338 (2020)

    Google Scholar 

  38. S. Zinatloo-Ajabshir, N. Ghasemian, M. Mousavi-Kamazani, M. Salavati-Niasari, Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem. 71, (2021)

    Article  CAS  Google Scholar 

  39. J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. A 22, 23710–23725 (2012)

    Article  CAS  Google Scholar 

  40. J. Zhang, Y. Sun, J. Zhu, Z. Kou, P. Hu, L. Liu et al., Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy 52, 307–314 (2018)

    Article  CAS  Google Scholar 

  41. F. Wang, H.R. Fu, Y. Kang, J. Zhang, A new approach towards zeolitic tetrazolate-imidazolate frameworks (ZTIFs) with uncoordinated N-heteroatom sites for high CO2 uptake. Chem. Commun. 50, 12065–12068 (2014)

    Article  CAS  Google Scholar 

  42. J. Zou, P. Liu, L. Huang, Q. Zhang, T. Lan, S. Zeng et al., Ultrahigh-content nitrogen-decorated nanoporous carbon derived from metal organic frameworks and its application in supercapacitors. Electrochim. Acta 271, 599–607 (2018)

    Article  CAS  Google Scholar 

  43. C. Chen, M. Liu, H. Rao, Y. Liu, S. Lin, J.-K. Sun et al., Doped porous carbon nanostructures with N-Co-O catalytic active sites for efficient electrocatalytic oxygen reduction reaction. Appl. Surf. Sci. 463, 386–394 (2019)

    Article  CAS  Google Scholar 

  44. R.S.D. Guo, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351, 361–365 (2016)

    Article  CAS  Google Scholar 

  45. Y. Zhao, X. Li, X. Jia, S. Gao, Why and how to tailor the vertical coordinate of pore size distribution to construct ORR-active carbon materials? Nano Energy 58, 384–391 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate support by the Shenzhen Basic Research Program (JCYJ20190808141611189), Basic and Applied Research Fund of Guangdong Province (2020A1515011018). Thanks for TEM measurement help of Instrumental Analysis Center of Shenzhen University (Xili Campus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohua Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 45533 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, J., Peng, M., Liu, P. et al. ZTIFs derived nitrogen-introduced high specific area and hierarchical porous carbon for oxygen reduction reaction. J Mater Sci: Mater Electron 32, 17094–17104 (2021). https://doi.org/10.1007/s10854-021-06049-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06049-4

Navigation