Skip to main content
Log in

Current transfer processes in a hydrated layer localized in a two-layer porous structure of nanosized ZrO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current transfer through a two-layer structure saturated with absorbed water, each layer of which consists of pressed ZrO2 nanoparticles with two sizes (10 and 20 nm), has been studied. The structure was obtained using the isostatic pressing the ZrO2 + H2O powders. The form of current–voltage characteristics inherent to the studied structure, that has diode properties with the rectification coefficient close to 3, has been explained by the appearance of a potential barrier at the interlayer boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

Relevant research data are included in the text of the work.

References

  1. E. Bein, I. Zucker, J.E. Drewes, U. Hübner, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127393

    Article  Google Scholar 

  2. Y. Liu, Z. Chen, J. Li, B. Gong, L. Wang, C. Lao, P. Wang, C. Liu, Y. Feng, X. Wang, Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2020.101348

    Article  Google Scholar 

  3. E.A. Jaramillo, A.C. Noell, Electroanalysis (2020). https://doi.org/10.1002/elan.201900761

    Article  Google Scholar 

  4. J. Hu, X. Tang, Q. Dai, Z. Liu, H. Zhang, A. Zheng, Z. Yuan, X. Li, Nat. Commun. (2021). https://doi.org/10.1038/s41467-021-23721-9

    Article  Google Scholar 

  5. P. Jing, M. Liu, P. Wang, J. Yang, M. Tang, C. He, Y. Pu, M. Liu, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.124259

    Article  Google Scholar 

  6. P. Simon, Y. Gogotsi, Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0747-z

    Article  Google Scholar 

  7. A.K. Solarajan, V. Murugadoss, S. Angaiah, Sci. Rep. (2017). https://doi.org/10.1038/srep45390

    Article  Google Scholar 

  8. K. Miyashita, T. Kondo, S. Sugai, T. Tei, M. Nishikawa, T. Tojo, M. Yuasa, Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-54197-9

    Article  Google Scholar 

  9. H. Luo, G. Wang, J. Lu, L. Zhuang, L. Xiao, A.C.S. Appl, Mater. Interfaces (2019). https://doi.org/10.1021/acsami.9b10860

    Article  Google Scholar 

  10. J. Jeon, J. Lee, K.Y. Jang, H. Yoon, J. Chang, A.C.S. Appl, Energy Mater. (2020). https://doi.org/10.1021/acsaem.0c01230

    Article  Google Scholar 

  11. Y.-C. Wang, A.L. Stevens, J. Han, Anal. Chem. (2005). https://doi.org/10.1021/ac050321z

    Article  Google Scholar 

  12. S.-C. Wang, H.-H. Wei, H.-P. Chen, M.-H. Tsai, C.-C. Yu, H.-C. Chang, Biomicrofluidics (2008). https://doi.org/10.1063/1.2904640

    Article  Google Scholar 

  13. H.-P. Chen, C.-C. Tsai, H.-M. Lee, S.-C. Wang, H.-C. Chang, Biomicrofluidics (2013). https://doi.org/10.1063/1.4817492

    Article  Google Scholar 

  14. A.N. Filippov, V.M. Starov, N.A. Kononenko, N.P. Berezina, Adv. Colloid Interface Sci. (2008). https://doi.org/10.1016/j.cis.2008.01.009

    Article  Google Scholar 

  15. A.N. Filippov, Colloid J. 78, 397 (2016). https://doi.org/10.1134/S1061933X16030042

    Article  CAS  Google Scholar 

  16. O. Zabolotnyi, V. Sychuk, D. Somov, Advances in Design: The Innovation Exchange (Springer, Berlin, 2019), pp. 186–198. https://doi.org/10.1007/978-3-319-93587-4_20

    Book  Google Scholar 

  17. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  Google Scholar 

  18. D.K. Pattadar, J.N. Sharma, B.P. Mainali, F.P. Zamborini, J. Phys. Chem. C 123, 24304 (2019). https://doi.org/10.1021/acs.jpcc.9b06555

    Article  CAS  Google Scholar 

  19. D. Vollath, F.D. Fischer, D. Holec, Beilstein J. Nanotechnol. (2018). https://doi.org/10.3762/bjnano.9.211

    Article  Google Scholar 

  20. R. Pärnamäe, S. Mareev, V. Nikonenko, S. Melnikov, N. Sheldeshov, V. Zabolotskii, H.V.M. Hamelers, M. Tedesco, J. Membr. Sci. (2021). https://doi.org/10.1016/j.memsci.2020.118538

    Article  Google Scholar 

  21. D.A. Vermaas, S. Wiegman, T. Nagaki, W.A. Smith, Sustain. Energy Fuels (2018). https://doi.org/10.1039/C8SE00118A

    Article  Google Scholar 

  22. T.S. Kalkur, Y.C. Lu, Thin Solid Films 207, 193 (1992). https://doi.org/10.1016/0040-6090(92)90122-R

    Article  CAS  Google Scholar 

  23. T. Yokoyama, T. Setoyama, N. Fujita, M. Nakajima, T. Maki, K. Fujii, Appl. Catal. A Gen. (1992). https://doi.org/10.1016/0926-860X(92)80212-U

    Article  Google Scholar 

  24. G. Dutta, K.P.S.S. Hembram, G.M. Rao, U.V. Waghmare, Appl. Phys. Lett. (2006). https://doi.org/10.1063/1.2388146

    Article  Google Scholar 

  25. J.C. Garcia, L.M.R. Scolfaro, A.T. Lino, V.N. Freire, G.A. Farias, C.C. Silva, H.W.L. Alves, S.C.P. Rodrigues, E.F. da Silva, J. Appl. Phys. (2006). https://doi.org/10.1063/1.2386967

    Article  Google Scholar 

  26. S. Shukla, S. Seal, Int. Mater. Rev. (2005). https://doi.org/10.1179/174328005X14267

    Article  Google Scholar 

  27. J.Q. Shang, K.Y. Lo, R.M. Quigley, Can. Geotech. J. (1994). https://doi.org/10.1139/t94-075

    Article  Google Scholar 

  28. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. (1938). https://doi.org/10.1021/ja01269a023

    Article  Google Scholar 

  29. H. Toraya, M. Yoshimura, S. Somiya, J. Am. Ceram. Soc. (1984). https://doi.org/10.1111/j.1151-2916.1984.tb19715.x

    Article  Google Scholar 

  30. O. Gorban, S. Synyakina, G. Volkova, Y. Kulik, T. Konstantinova, High Press. Res. (2012). https://doi.org/10.1080/08957959.2012.655245

    Article  Google Scholar 

  31. O. Gorban, S. Synyakina, G. Volkova, S. Gorban, T. Konstantiova, S. Lyubchik, J. Solid State Chem. (2015). https://doi.org/10.1016/j.jssc.2015.09.026

    Article  Google Scholar 

  32. N.V. Vlasenko, P.I. Kyriienko, K.V. Valihura, G.R. Kosmambetova, S.O. Soloviev, P.E. Strizhak, ACS Omega (2019). https://doi.org/10.1021/acsomega.9b03170

    Article  Google Scholar 

  33. T. Yamaguchi, Y. Nakano, K. Tanabe, Bull. Chem. Soc. Jpn. (1978). https://doi.org/10.1246/bcsj.51.2482

    Article  Google Scholar 

  34. D.T. Chaopradith, D.O. Scanlon, C.R.A. Catlow, J. Phys. Chem. C (2015). https://doi.org/10.1021/acs.jpcc.5b06825

    Article  Google Scholar 

  35. Z. Zhu, Z. Yu, F.F. Yun, D. Pan, Y. Tian, L. Jiang, X. Wang, Natl. Sci. Rev. (2021). https://doi.org/10.1093/nsr/nwaa166

    Article  Google Scholar 

  36. L. Vlcek, Z. Zhang, M.L. Machesky, P. Fenter, J. Rosenqvist, D.J. Wesolowski, L.M. Anovitz, M. Predota, P.T. Cummings, Langmuir (2007). https://doi.org/10.1021/la063306d

    Article  Google Scholar 

  37. U. Terranova, N.H. de Leeuw, J. Chem. Phys. (2016). https://doi.org/10.1063/1.4942755

    Article  Google Scholar 

  38. B. Hou, S. Kim, T. Kim, C. Park, C.B. Bahn, J. Kim, S. Hong, S.Y. Lee, J.H. Kim, J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.6b07550

    Article  Google Scholar 

  39. A.-M.O. Mohamed, E.K. Paleologos, Fundamentals of Geoenvironmental Engineering (Elsevier, Amsterdam, 2018), pp. 581–637

    Book  Google Scholar 

  40. M.J. Zouaoui, B. Nait-Ali, N. Glandut, D.S. Smith, J. Eur. Ceram. Soc. (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.008

    Article  Google Scholar 

  41. M.S. Yeganeh, S.M. Dougal, H.S. Pink, Phys. Rev. Lett. (1999). https://doi.org/10.1103/PhysRevLett.83.1179

    Article  Google Scholar 

  42. S.Ø. Stub, E. Vøllestad, T. Norby, J. Phys. Chem. C (2017). https://doi.org/10.1021/acs.jpcc.7b03005

    Article  Google Scholar 

  43. J. Gao, Y. Meng, A. Benton, J. He, L.G. Jacobsohn, J. Tong, K.S. Brinkman, ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.0c08120

    Article  Google Scholar 

  44. S. Miyoshi, Y. Akao, N. Kuwata, J. Kawamura, Y. Oyama, T. Yagi, S. Yamaguchi, Chem. Mater. (2014). https://doi.org/10.1021/cm5012923

    Article  Google Scholar 

  45. E. Celik, R.S. Negi, M. Bastianello, D. Boll, A. Mazilkin, T. Brezesinski, M.T. Elm, Phys. Chem. Chem. Phys. (2020). https://doi.org/10.1039/D0CP01619E

    Article  Google Scholar 

  46. X. Wu, J.J. Hong, W. Shin, L. Ma, T. Liu, X. Bi, Y. Yuan, Y. Qi, T.W. Surta, W. Huang, J. Neuefeind, T. Wu, P.A. Greaney, J. Lu, X. Ji, Nat. Energy (2019). https://doi.org/10.1038/s41560-018-0309-7

    Article  Google Scholar 

  47. G.E. Brown, V.E. Henrich, W.H. Casey, D.L. Clark, C. Eggleston, A. Felmy, D.W. Goodman, M. Grätzel, G. Maciel, M.I. McCarthy, K.H. Nealson, D.A. Sverjensky, M.F. Toney, J.M. Zachara, Chem. Rev. (1999). https://doi.org/10.1021/cr980011z

    Article  Google Scholar 

  48. V.M. Gun’ko, V.I. Zarko, E.V. Goncharuk, L.S. Andriyko, V.V. Turov, Y.M. Nychiporuk, R. Leboda, J. Skubiszewska-Zięba, A.L. Gabchak, V.D. Osovskii, Y.G. Ptushinskii, G.R. Yurchenko, O.A. Mishchuk, P.P. Gorbik, P. Pissis, J.P. Blitz, Adv. Colloid Interface Sci. (2007). https://doi.org/10.1016/j.cis.2006.11.001

    Article  Google Scholar 

  49. H. Ohshima, Electrical Phenomena at Interfaces and Biointerfaces (Wiley, New York, 2012)

    Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowvska-Curie grant agreement 871284 Project SSHARE

Funding

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowvska-Curie grant agreement 871284 project SSHARE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Yu. Bacherikov.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacherikov, Y.Y., Lytvyn, P.M., Mamykin, S.V. et al. Current transfer processes in a hydrated layer localized in a two-layer porous structure of nanosized ZrO2. J Mater Sci: Mater Electron 33, 2753–2764 (2022). https://doi.org/10.1007/s10854-021-07481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07481-2

Navigation