Skip to main content
Log in

Ultrafast trace-level detection of methyl nicotinate biomarker using TiO2/SiNWs nanocomposite-based sensing platform

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The reported work presents an ultrafast and ultrasensitive sensing platform for the precise and reliable trace-level detection of Methyl nicotinate (MN) leading to early stage diagnosis of Tuberculosis (TB). The design and fabrication of the sensor was done using silicon nanowires (SiNWs) and titanium dioxide (TiO2) nanoparticles-based nanocomposite. The structural morphology and elemental analysis of the fabricated sensor were done using various characterization tools such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), Energy Dispersive X-Ray Analyzer (EDA) and X-ray diffraction (XRD). With a very precise limit of detection (LOD) (10 ppb), the sensor response was observed to be 1.02. The fabricated TiO2/SiNWs sensor demonstrates good accuracy and reproducibility along with very fast response and recovery time, i.e., ~20sec and ~30sec, respectively. Hence, the results reported in the present work and the developed sensing platform using TiO2/SiNWs nanocomposite could be utilized for reliable and precise identification of TB at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MN:

Methyl Nicotinate

VOCs:

Volatile organic compounds

SiNWs:

n-type silicon nanowires

MACE:

Metal-assisted chemical etching

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

EDX:

Energy dispersive X-ray spectroscopy

XRD:

X-ray Diffraction

FTIR:

Fourier transform infrared spectroscopy

TiO2/SiNWs:

Titanium dioxide-coated silicon nanowires

References

  1. Global tuberculosis report, World Health Organization. (2020). https://doi.org//entity/tb/publications/global_report/en/index.html

  2. C.C. Dacso, Clinical Methods: The History, Physical, and Laboratory Examinations. Annals of Internal Medicine. 113, 563 (1990). https://doi.org/10.7326/0003-4819-113-7-563_2

    Article  Google Scholar 

  3. G.H. Mazurek, J. Jereb, A. Vernon, P. LoBue, S. Goldberg, K. Castro, Updated Guidelines for Using Interferon Gamma Release Assays to Detect Mycobacterium tuberculosis Infection --- United States, 2010, Www.Cdc.Gov. (2010). https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5905a1.htm

  4. E.N. Ndzi, C.N. Nkenfou, L.C. Gwom, N. Fainguem, J. Fokam, Y. Pefura, The pros and cons of the QuantiFERON test for the diagnosis of tuberculosis, prediction of disease progression, and treatment monitoring. Int. J. Mycobacteriol. (2016). https://doi.org/10.1016/j.ijmyco.2016.02.005

    Article  Google Scholar 

  5. G. Gualano, P. Mencarini, F.N. Lauria, F. Palmieri, S. Mfinanga, P. Mwaba, J. Chakaya, A. Zumla, G. Ippolito, Tuberculin skin test – Outdated or still useful for Latent TB infection screening? Int. J. Infect. Diseases (2019). https://doi.org/10.1016/j.ijid.2019.01.048

    Article  Google Scholar 

  6. R. Piccazzo, F. Paparo, G. Garlaschi, Diagnostic accuracy of chest radiography for the diagnosis of tuberculosis (TB) and its role in the detection of latent TB Infection: a systematic review. J. Rheumatol. Suppl. (2014). https://doi.org/10.3899/jrheum.140100

    Article  Google Scholar 

  7. P. Das, S. Ganguly, B. Mandal, Sputum smear microscopy in tuberculosis: It is still relevant in the era of molecular diagnosis when seen from the public health perspective. Biomed. Biotechnol. Res. J. (BBRJ). (2019). https://doi.org/10.4103/bbrj.bbrj_54_19

    Article  Google Scholar 

  8. T.M. Daniel, Toman’s Tuberculosis. Case Detection, Treatment, and Monitoring. Questions and Answers. Second Edition., The American Journal of Tropical Medicine and Hygiene.  (2005). https://doi.org/10.4269/ajtmh.2005.73.229

  9. W.M. Ahmed, O. Lawal, T.M. Nijsen, R. Goodacre, S.J. Fowler, Exhaled volatile organic compounds of infection: a systematic review. ACS Infect Diseases (2017). https://doi.org/10.1021/acsinfecdis.7b00088

    Article  Google Scholar 

  10. M. Hakim, Y.Y. Broza, O. Barash, N. Peled, M. Phillips, A. Amann, H. Haick, Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. (2012). https://doi.org/10.1021/cr300174a

    Article  Google Scholar 

  11. M. Phillips, V. Basa-Dalay, J. Blais, G. Bothamley, A. Chaturvedi, K.D. Modi, M. Pandya, M.P.R. Natividad, U. Patel, N.N. Ramraje, P. Schmitt, Z.F. Udwadia, Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis. 92, 314–320 (2012). https://doi.org/10.1016/j.tube.2012.04.002

    Article  Google Scholar 

  12. M. Phillips, V. Basa-Dalay, G. Bothamley, R.N. Cataneo, P.K. Lam, M.P.R. Natividad, P. Schmitt, J. Wai, Breath biomarkers of active pulmonary tuberculosis. Tuberculosis (2010). https://doi.org/10.1016/j.tube.2010.01.003

    Article  Google Scholar 

  13. M. Phillips, R.N. Cataneo, R. Condos, G.A. Ring Erickson, J. Greenberg, V. la Bombardi, M.I. Munawar, O. Tietje, Volatile biomarkers of pulmonary tuberculosis in the breath, Tuberculosis.  (2007). https://doi.org/10.1016/j.tube.2006.03.004

  14. M. Syhre, L. Manning, S. Phuanukoonnon, P. Harino, S.T. Chambers, The scent of Mycobacterium tuberculosis – Part II breath. Tuberculosis (2009). https://doi.org/10.1016/j.tube.2009.04.003

    Article  Google Scholar 

  15. M. Syhre, S.T. Chambers, The scent of Mycobacterium tuberculosis. Tuberculosis. (2008). https://doi.org/10.1016/j.tube.2008.01.002

    Article  Google Scholar 

  16. S. Sethi, R. Nanda, T. Chakraborty, Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin. Microbiol. Rev. 26, 462 (2013)

    Article  CAS  Google Scholar 

  17. P. van Velzen, P. Brinkman, H.H. Knobel, J.W.K. van den Berg, R.E. Jonkers, R.J. Loijmans, J.M. Prins, P.J. Sterk, Exhaled Breath Profiles Before, During and After Exacerbation of COPD: A Prospective Follow-Up Study, COPD. Journal of Chronic Obstructive Pulmonary Disease. 16, 330–337 (2019). https://doi.org/10.1080/15412555.2019.1669550

    Article  Google Scholar 

  18. B. Buszewski, M. Kęsy, T. Ligor, A. Amann, Human exhaled air analytics: biomarkers of diseases. Biomed. Chromatogr. 21, 553–566 (2007). https://doi.org/10.1002/bmc.835

    Article  CAS  Google Scholar 

  19. P. Jisha, M.S. Suma, M.V. Murugendrappa, S.R. Ananda, Fabrication, characterization, and malaria biomarker VOC-sensing properties of WO3-doped polyaniline. J. Mater. Sci.: Mater. Electron. 32, 11243–11263 (2021). https://doi.org/10.1007/s10854-021-05794-w

    Article  CAS  Google Scholar 

  20. G.J. Thangamani, K. Deshmukh, K. Chidambaram et al., Influence of CuO nanoparticles and graphene nanoplatelets on the sensing behaviour of poly(vinyl alcohol) nanocomposites for the detection of ethanol and propanol vapors. J. Mater. Sci.: Mater. Electron. 29, 5186–5205 (2018). https://doi.org/10.1007/s10854-017-8484-z

    Article  CAS  Google Scholar 

  21. Z. Khatoon, H. Fouad, H.K. Seo et al., Feasibility study of doped SnO2 nanomaterial for electronic nose towards sensing biomarkers of lung cancer. J. Mater. Sci.: Mater. Electron. 31, 15751–15763 (2020). https://doi.org/10.1007/s10854-020-04137-5

    Article  CAS  Google Scholar 

  22. M.M. Chamakh, D. Ponnamma, M.A.A. Al-Maadeed, Vapor sensing performances of PVDF nanocomposites containing titanium dioxide nanotubes decorated multi-walled carbon nanotubes. J. Mater. Sci.: Mater. Electron. 29, 4402–4412 (2017). https://doi.org/10.1007/s10854-017-8387-z

    Article  CAS  Google Scholar 

  23. L. de Smet, D. Ullien, M. Mescher, E.J.R. Sudhölter, Organic surface modification of silicon nanowire-based sensor devices. Nanowires-Implementations Appl 978, 267–288 (2011)

    Google Scholar 

  24. A. Cao, E. Sudhölter, L. de Smet, Silicon nanowire-based devices for gas-phase sensing. Sensors (2013). https://doi.org/10.3390/s140100245

    Article  Google Scholar 

  25. P.K. Bairagi, A. Goyal, N. Verma, Methyl nicotinate biomarker of tuberculosis voltammetrically detected on cobalt nanoparticle-dispersed reduced graphene oxide-based carbon film in blood. Sens. Actuators B: Chem. (2019). https://doi.org/10.1016/j.snb.2019.126754

    Article  Google Scholar 

  26. D. Bhattacharyya, Y.R. Smith, M. Misra, S.K. Mohanty, Electrochemical detection of methyl nicotinate biomarker using functionalized anodized titania nanotube arrays. Mater. Res. Exp. (2015). https://doi.org/10.1088/2053-1591/2/2/025002

    Article  Google Scholar 

  27. Y. Kim, J. Young, D.C. Robinson, G. Jones, M. Misra, S.K. Mohanty, Electrochemical detection of four prominent tuberculosis biomarkers using functionalized titania nanotubular array sensing platform. ECS Meeting Abstracts (2015). https://doi.org/10.1149/ma2015-01/39/2069

    Article  Google Scholar 

  28. K. Wei Shah, W. Li, A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings, Nanomaterials (2019). https://doi.org/10.3390/nano9060910

  29. W. Maziarz, A. Kusior, A. Trenczek-Zajac, Nanostructured TiO 2-based gas sensors with enhanced sensitivity to reducing gases. Beilstein J. Nanotechnol. 7, 1718–1726 (2016). https://doi.org/10.3762/bjnano.7.164

    Article  CAS  Google Scholar 

  30. G. Mele, R. del Sole, X. Lü, Applications of TiO2 in sensor devices, in: Titanium Dioxide (Tioâ) and Its Applications, Elsevier, 2021: pp. 527–581. https://doi.org/10.1016/b978-0-12-819960-2.00004-3

  31. V. Gautam, A. Kumar, R. Kumar, V.K. Jain, S. Nagpal, Silicon nanowires/reduced graphene oxide nanocomposite based novel sensor platform for detection of cyclohexane and formaldehyde. Mater. Sci. Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2020.105571

    Article  Google Scholar 

  32. M.S. Azami, W.I. Nawawi, A.H. Jawad, M.A.M. Ishak, K. Ismail, N-doped TiO2 Synthesised via Microwave Induced Photocatalytic on RR4 dye Removal under LED Light Irradiation. Sains Malaysiana. 46, 1309–1316 (2017). https://doi.org/10.17576/jsm-2017-4608-17

    Article  CAS  Google Scholar 

  33. A.-H. Chiou, S.-D. Wu, R.-C. Hsiao, C.-Y. Hsu, TiO2–silicon nanowire arrays for heterojunction diode applications. Thin Solid Films. 616, 116–121 (2016). https://doi.org/10.1016/j.tsf.2016.07.039

    Article  CAS  Google Scholar 

  34. P.D. File, Card No. 21-1272 and Card No. 21-1276. (n.d.)

  35. A. Kumar, H. Dhasmana, A. Kumar, V. Kumar, A. Verma, V.K. Jain, Highly sensitive MWCNTs/SiNWs hybrid nanostructured sensor fabricated on silicon-chip for alcohol vapors detection. Physica E: Low-Dimensional Systems and Nanostructures. 127, 114538 (2021). https://doi.org/10.1016/j.physe.2020.114538

    Article  CAS  Google Scholar 

  36. C. Frederic, G. Skandan, A. Singhal, Materials and processing issues in nanostructured semiconductor gas sensors. JOM 52, 1–6 (2000)

    Article  Google Scholar 

  37. Y. Kwon, H. Kim, S. Lee, I.J. Chin, T.Y. Seong, W.I. Lee, C. Lee, Enhanced ethanol sensing properties of TiO 2 nanotube sensors. Sensors and Actuators, B: Chemical. 173, 441–446 (2012). https://doi.org/10.1016/j.snb.2012.07.062

    Article  CAS  Google Scholar 

  38. Y. Wang, Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang, B. Zhu, S. Wang, S. Wu, Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles. Sensors and Actuators, B: Chemical. 131, 183–189 (2008). https://doi.org/10.1016/j.snb.2007.11.002

    Article  CAS  Google Scholar 

  39. J. Wang, B. Zou, S. Ruan, J. Zhao, F. Wu, Synthesis, characterization, and gas-sensing property for HCHO of Ag-doped In2O3 nanocrystalline powders. Materials Chemistry and Physics. 117, 489–493 (2009). https://doi.org/10.1016/j.matchemphys.2009.06.045

    Article  CAS  Google Scholar 

  40. J. Malallah Rzaij, A. Mohsen, Abass, Review on: TiO2 Thin Film as a Metal Oxide Gas Sensor. Journal of Chemical Reviews. 2, 114–121 (2020). https://doi.org/10.33945/SAMI/JCR.2020.2.4

    Article  Google Scholar 

Download references

Acknowledgements

This study received no particular support from governmental, private, or non-profit funding sources. We’d like to express our thanks to Dr. Ashok Chauhan, Amity University’s Founder President, for his unwavering support and motivation.

Funding

The authors declare they have no financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Nagpal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, V., Kumar, A., Kumar, R. et al. Ultrafast trace-level detection of methyl nicotinate biomarker using TiO2/SiNWs nanocomposite-based sensing platform. J Mater Sci: Mater Electron 33, 3411–3423 (2022). https://doi.org/10.1007/s10854-021-07538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07538-2

Navigation