Skip to main content

Advertisement

Log in

Structural properties and near-infrared light from Ce3+/Nd3+-co-doped LaPO4 nanophosphors for solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To enhance the spectral response of solar cells, an experimental study on LaPO4:0.01Ce3+/xNd3+ (x = 0, 2, 4 mol%) was carried out, where structural and morphological properties of the prepared samples were well characterized by the means of X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electronic microscope. Additionally, the photoluminescence behavior of phosphors in ultraviolet–visible (UV–VIS) and Near-infrared (NIR) regions were investigated to confirm the energy transfer (ET) from Ce3+ to Nd3+. Moreover, the quantum efficiency of Ce3+/Nd3+-co-doped samples was estimated as high as ~ 172% and the possible ET process was described. Accordingly, the LaPO4:Ce3+/Nd3+ phosphors can convert the UV light (275 nm) into NIR photons (approx. 1059 nm) through the possible two-pathway energy transfer processes from Ce3+ sensitizer ions to Nd3+ activators. Obtained NIR down-conversion emissions are suitable for improving the conversion efficiency of c-Si solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. P.S. David, P. Panigrahi, S. Raman, G.S. Nagarajan, Enhanced near-infrared downconversion luminescence in ZnxNb(1x)O composite host co-doped Bi3+/Yb3+ phosphor for Si solar cell applications. Mater. Sci. Semicond. Process. 122, 105486 (2021)

    Article  CAS  Google Scholar 

  2. N.S. Sawala, N.S. Bajaj, S.K. Omanwar, Near-infrared quantum cutting in Yb3+ ion doped strontium vanadate. Infrared Phys. Technol. 76, 271–275 (2016)

    Article  CAS  Google Scholar 

  3. Y. Tai, G. Zheng, H. Wang, J. Bai, Near-infrared quantum cutting of Ce3+-Nd3+ co-doped Y3Al5O12 crystal for crystalline silicon solar cells. J. Photochem. Photobiol. A 303, 80–85 (2015)

    Article  Google Scholar 

  4. N.S. Sawala, S.K. Omanwar, Downconversion from ultra violet to near infer red region in novel Yb3+ doped LiSrVO4 phosphor. J. Alloys Compd. 686, 287–291 (2016)

    Article  CAS  Google Scholar 

  5. H. Yao, Q. Tang, Luminescent anti-reflection coatings based on down-conversion emission of Tb3+-Yb3+ co-doped NaYF4 nanoparticles for silicon solar cells applications. Sol. Energy 211, 446–452 (2020)

    Article  CAS  Google Scholar 

  6. J. Day, S. Senthilarasu, T.K. Mallick, Improving spectral modification for applications in solar cells: a review. Renew. Energy 132, 186–205 (2019)

    Article  Google Scholar 

  7. P. Sheeba, P. Panigrahi, G. Subramanium, Enhanced near IR downconversion luminescence in Eu3+-Yb3+ co-doped V activated ZnO host: an effort towards efficiency enhancement in Si-solar cells. Mater. Lett. 249, 9–12 (2019)

    Article  Google Scholar 

  8. Q.Y. Zhang, X.Y. Huang, Recent progress in quantum cutting phosphors. Prog. Mater. Sci. 55, 353–427 (2010)

    Article  CAS  Google Scholar 

  9. M.B. de la Mora, O. Amelines-Sarria, B.M. Monroy, C.D. Hernández-Pérez, J.E. Lugo, Materials for downconversion in solar cells: perspectives and challenges. Sol. Energy Mater. Sol. Cells 165, 59–71 (2017)

    Article  Google Scholar 

  10. J. Komar, R. Lisiecki, R. Kowalski, B. Macalik, P. Solarz, M. Glowacki, M. Berkowski, W. Ryba-Romanowski, Down- and upconversion phenomena in Gd3(Al, Ga)5O12 crystals doped with Pr3+ and Yb3+ ions. J. Phys. Chem. C 122, 13061–13071 (2018)

    Article  CAS  Google Scholar 

  11. K. Grzeszkiewicz, G. Lucchini, M. Ptak, M.L. Saladino, D. Hreniak, A. Speghini, Effect of surface impurities on downconversion luminescence of Pr3+, Yb3+ activated SrF2 nanoparticles. Opt. Mater. 107, 110020 (2020)

    Article  CAS  Google Scholar 

  12. Y. Zhydachevskyy, I.I. Syvorotka, V. Tsiumra, M. Baran, L. Lipińska, A. Wierzbicka, A. Suchocki, Quantum efficiency of the down-conversion process in Bi3+–Yb3+ and Ce3+–Yb3+ co-doped garnets. Sol. Energy Mater. Sol. Cells 185, 240–251 (2018)

    Article  CAS  Google Scholar 

  13. S.K. Omanwar, S.R. Jaiswal, N.S. Sawala, K.A. Koparkar, V.B. Bhatkar, Ultra-violet to visible quantum cutting in YPO4:Gd3+, Tb3+ phosphor via down conversion. Mater. Discov. 7, 15–20 (2017)

    Article  Google Scholar 

  14. M.R.M. de Sousa, T.O. Sales, W.Q. Santos, W.F. Silva, C. Jacinto, Near-infrared quantum cutting in Pr3+/Yb3+ NaYF4 nanocrystals for luminescent solar converter. J. Lumin. 233, 117919 (2021)

    Article  Google Scholar 

  15. S.K. Karunakaran, C. Lou, G.M. Arumugam, C. Huihui, D. Pribat, Efficiency improvement of Si solar cells by down-shifting Ce3+-doped and down-conversion Ce3+-Yb3+ co-doped YAG phosphors. Sol. Energy 188, 45–50 (2019)

    Article  CAS  Google Scholar 

  16. A.A. Pathak, R.A. Talewar, C.P. Joshi, S.V. Moharil, NIR emission and Ce3+–Nd3+ energy transfer in LaCaAl3O7 phosphor prepared by combustion synthesis. J. Lumin. 179, 350–354 (2016)

    Article  CAS  Google Scholar 

  17. F. Fan, F. Liu, S. Yu, J. Wu, J. Zhang, T. Wang, Y. Li, L. Zhao, Q. Qiang, W. Chen, Efficient near-infrared luminescence and energy transfer mechanism in Ca3Al2O6:Ce3+,Yb3+ phosphors. J. Lumin. 241, 118511 (2022)

    Article  CAS  Google Scholar 

  18. Y. Wang, H. Zhang, S. Qu, C. Su, Downconversion and upconversion emissions of GdPO4:Yb3+/Tb3+ and its potential applications in solar cells. J. Alloys Compd. 677, 266–270 (2016)

    Article  CAS  Google Scholar 

  19. O. AitMellal, L. Oufni, M.Y. Messous, F. Neatu, M. Florea, S. Neatu, A.M. Rostas, M. Secu, Structural and optical investigations of Ce3+/Mn2+-doped LaPO4 phosphors. J. Electron. Mater. 50, 2137–2147 (2021)

    Article  CAS  Google Scholar 

  20. Z. Yi, W. Lu, S. Zeng, H. Wang, L. Rao, Z. Li, Tunable multicolor and white luminescence in Tb3+/Dy3+/Mn2+ doped CePO4 via energy transfer. J. Alloys Compd. 637, 489–496 (2015)

    Article  CAS  Google Scholar 

  21. B. Li, X. Huang, Multicolour tunable luminescence of thermal-stable Ce3+/Tb3+/Eu3+-triactivated Ca3Gd(GaO)3(BO3)4 phosphors via Ce3+ → Tb3+ → Eu3+ energy transfer for near-UV WLEDs applications. Ceram. Int. 44, 4915–4923 (2018)

    Article  CAS  Google Scholar 

  22. K.K. Gupta, R.M. Kadam, N.S. Dhoble, S.P. Lochab, S.J. Dhoble, A comparative investigation of Ce3+/Dy3+ and Eu2+ doped LiAlO2 phosphors for high dose radiation dosimetry: explanation of defect recombination mechanism using PL, TL and EPR study. J. Lumin. 188, 81–95 (2017)

    Article  Google Scholar 

  23. U. Rogulis, A. Fedotovs, A. Antuzevics, D. Berzins, Y. Zhydachevskyy, D. Sugak, Optical detection of paramagnetic centres in activated oxyfluoride glass-ceramics. Acta Phys. Pol. A 133, 785–788 (2018)

    Article  CAS  Google Scholar 

  24. D. Pasiński, J. Sokolnicki, Broadband orange phosphor by energy transfer between Ce3+ and Mn2+ in Ca3Al2Ge3O12 garnet host. J. Alloys Compd. 786, 808–816 (2019)

    Article  Google Scholar 

  25. V.V. Atuchin, N.F. Beisel, E.N. Galashov, E.M. Mandrik, M.S. Molokeev, A.P. Yelisseyev, A.A. Yusuf, Z. Xia, Pressure-stimulated synthesis and luminescence properties of microcrystalline (Lu, Y)3Al5O12:Ce3+ garnet phosphors. ACS Appl. Mater. Interfaces 7, 26235–26243 (2015)

    Article  CAS  Google Scholar 

  26. S. Ahmad, M.K. Pandey, S. Das, A. Mishra, R. Nagarajan, Morphology controlled green synthesis of photoluminescent LaPO4:Ce3+-Tb3+ nanorods. Chem. Phys. Lett. 776, 138704 (2021)

    Article  CAS  Google Scholar 

  27. A. Jain, S.J. Dhoble, D.R. Peshwe, Retrospection of polymer capped LaPO4:Eu3+ luminescent nano phosphor for ingenious solid state lighting. Mater. Res. Express 6, 125555 (2020)

    Article  Google Scholar 

  28. R. Priya, R. Mariappan, A. Karthikeyan, E. Palani, E. Krishnamoorthy, G. Gowrisankar, Review on rare earth metals doped LaPO4 for optoelectronic applications. Solid State Commun. 339, 114457 (2021)

    Article  CAS  Google Scholar 

  29. K. Hamraoui, M. Ferhi, K. Horchani-Naifer, M. Ferid, Color temperature tunable of Dy3+-doped LaPO4 nanorods prepared via hydrothermal method for white LEDs applications. Opt. Mater. 84, 852–863 (2018)

    Article  CAS  Google Scholar 

  30. F. Meng, Z. Dehouche, T.G. Ireland, G.R. Fern, Improved photovoltaic performance of monocrystalline silicon solar cell through luminescent down-converting Gd2O2S:Tb3+ phosphor. Prog. Photovoltaics Res. Appl. 27, 640–651 (2019)

    CAS  Google Scholar 

  31. A.K. Soni, B.P. Singh, in Luminescence-OLED Technology and Applications. ed. by S. Pyshkin (IntechOpen, London, 2019), p. 1

    Google Scholar 

  32. J. Chen, H. Zhang, F. Li, H. Guo, High efficient near-infrared quantum cutting in Ce3+, Yb3+ co-doped LuBO3 phosphors. Mater. Chem. Phys. 128, 191–194 (2011)

    Article  CAS  Google Scholar 

  33. N.S. Sawala, S.K. Omanwar, Study of energy transfer and spectral downshifting in Ce, RE (RE = Nd and Yb) co-doped lanthanum phosphate. Chem. Phys. 485, 9–12 (2017)

    Article  Google Scholar 

  34. W. van Schaik, S. Lizzo, W. Smit, G. Blasse, Influence of impurities on the luminescence quantum efficiency of (La, Ce, Tb)PO4. J. Electrochem. Soc. 140, 216–222 (1993)

    Article  Google Scholar 

  35. O. AitMellal, L. Oufni, M.Y. Messous, M.M. Trandafir, I.M. Chirica, M. Florea, Ş Neatu, A.M. Rostas, M. Secu, F. Neatu, Comparative investigation of structural, EPR, optical and photoluminescence properties of nanostructured LaPO4:Ce/RE/Me and LaPO4:Yb/Er phosphors prepared by co-precipitation method. J. Solid State Chem. 301, 122310 (2021)

    Article  CAS  Google Scholar 

  36. A.A. Ansari, Silica-modified luminescent LaPO4:Eu@LaPO4@SiO2 core/shell nanorods: synthesis, structural and luminescent properties. Luminescence 33, 112–118 (2018)

    Article  CAS  Google Scholar 

  37. D.F. Mullica, W.O. Milligan, D.A. Grossie, G.W. Beall, L.A. Boatner, Ninefold coordination LaPO4: pentagonal interpenetrating tetrahedral polyhedron. Inorg. Chim. Acta 95, 231–236 (1984)

    Article  CAS  Google Scholar 

  38. A. Mathur, P. Halappa, C. Shivakumara, Synthesis and characterization of Sm3+ activated La1−xGdxPO4 phosphors for white LEDs applications. J. Mater. Sci.: Mater. Electron. 29, 19951–19964 (2018)

    CAS  Google Scholar 

  39. S. Ullah, Y. Feng, M. Zhu, H. Kong, S. Sun, C. Dou, F. Zheng, J. Tang, D. Zhong, B. Teng, Co-precipitation synthesis and photoluminescence properties of (GdxLa1x)PO4: 5at.% Eu3+ orange-red emitting phosphors. J. Mater. Sci.: Mater. Electron. 30, 14703–14713 (2019)

    CAS  Google Scholar 

  40. G. Vinothkumar, S. Rengaraj, P. Arunkumar, S.W. Cha, K. Suresh Babu, Ionic radii and concentration dependency of RE3+ (Eu3+, Nd3+, Pr3+, and La3+)-doped cerium oxide nanoparticles for enhanced multienzyme-mimetic and hydroxyl radical scavenging activity. J. Phys. Chem. C 123, 541–553 (2019)

    Article  CAS  Google Scholar 

  41. G. Phaomei, W. Rameshwor Singh, N. Shanta Singh, R.S. Ningthoujam, Luminescence properties of Ce3+ co-activated LaPO4:Dy3+ nanorods prepared in different solvents and tunable blue to white light emission from Eu3+ co-activated LaPO4:Dy3+, Ce3+. J. Lumin. 134, 649–656 (2013)

    Article  CAS  Google Scholar 

  42. J. Rodríguez-Carvajal, FullProf, 1st edn. (CEA/Saclay, Gif sur Yvette Cedex, 2001), pp. 1–59

    Google Scholar 

  43. A. Al-Wahish, U. Al-Binni, L. Tetard, C.A. Bridges, K. Kharel, Ö. Günaydln-Şen, A. Huq, J.L. Musfeldt, M.P. Paranthaman, D. Mandrus, Structure and dynamics investigations of Sr/Ca-doped LaPO4 proton conductors. J. Phys. Chem. C 121, 11991–12002 (2017)

    Article  CAS  Google Scholar 

  44. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen. 26, 98 (1918)

    Google Scholar 

  45. J.I. Langford, Some applications of pattern fitting to powder diffraction data. Prog. Cryst. Growth Charact. 14, 185–211 (1987)

    Article  CAS  Google Scholar 

  46. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  47. M.T. Colomer, L. Zur, M. Ferrari, A.L. Ortiz, Structural-microstructural characterization and optical properties of Eu3+, Tb3+-codoped LaPO4·nH2O and LaPO4 nanorods hydrothermally synthesized with microwaves. Ceram. Int. 44, 11993–12001 (2018)

    Article  CAS  Google Scholar 

  48. S. Geng, A.J. Fernández-Carrión, J. Xu, H. Yi, Y. Lv, X. Kuang, Electrical properties and oxide ion conducting mechanism in Na-doped LaPO4. Scr. Mater. 178, 527–532 (2020)

    Article  CAS  Google Scholar 

  49. G. Stryganyuk, D.M. Trots, A. Voloshinovskii, T. Shalapska, V. Zakordonskiy, Luminescence of Ce3+ doped LaPO4 nanophosphors upon Ce3+ 4f–5d and band-to-band excitation. J. Lumin. 128, 355–360 (2008)

    Article  CAS  Google Scholar 

  50. P. Kubelka, Contribution to the optic of paint. Z. Tech. Phys. 12, 593–601 (1931)

    Google Scholar 

  51. R. Köferstein, L. Jäger, S.G. Ebbinghaus, Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics. Solid State Ion. 249, 1–5 (2013)

    Article  Google Scholar 

  52. N. Saltmarsh, G.A. Kumar, M. Kailasnath, V. Shenoy, C. Santhosh, D.K. Sardar, Spectroscopic characterizations of Er doped LaPO4 submicron phosphors prepared by homogeneous precipitation method. Opt. Mater. 53, 24–29 (2016)

    Article  CAS  Google Scholar 

  53. X. Wang, X. Wang, X. Zheng, L. Zhang, Experimental and theoretical study on structural and electronic properties of LaPO4:Ln3+ (Ln = Sm, Gd and Tb). J. Alloys Compd. 632, 269–273 (2015)

    Article  CAS  Google Scholar 

  54. Z.W. Zhang, J.W. Hou, J. Li, X.Y. Wang, X.Y. Zhu, H.X. Qi, R.J. Lv, D.J. Wang, Tunable luminescence and energy transfer properties of LiSrPO4: Ce3+, Tb3+, Mn2+ phosphors. J. Alloys Compd. 682, 557–564 (2016)

    Article  CAS  Google Scholar 

  55. M. Xu, L. Wang, D. Jia, F. Le, Luminescence properties and energy transfer investigations of Zn2P2O7: Ce3+, Tb3+ phosphor. J. Lumin. 158, 125–129 (2015)

    Article  CAS  Google Scholar 

  56. K.D. Oskam, R.T. Wegh, H. Donker, E.V.D. Van Loef, A. Meijerink, Downconversion: a new route to visible quantum cutting. J. Alloys Compd. 300, 421–425 (2000)

    Article  Google Scholar 

  57. B. Li, X. Huang, J. Lin, Single-phased white-emitting Ca3Y(GaO)3(BO3)4:Ce3+, Tb3+, Sm3+ phosphors with high-efficiency: photoluminescence, energy transfer and application in near-UV-pumped white LEDs. J. Lumin. 204, 410–418 (2018)

    Article  CAS  Google Scholar 

  58. S.H. Yang, C.H. Yen, C.M. Lin, P.J. Chiang, Energy transfer mechanism and luminescence properties of color tunable LaPO4:Tm, Eu phosphor. Ceram. Int. 41, 8211–8215 (2015)

    Article  CAS  Google Scholar 

  59. P. Tumram, P.D. Sahare, S.V. Moharil, Energy transfer studies in Ca10Li(PO4)7:Ce3+, Nd3+. Optik 168, 92–100 (2018)

    Article  CAS  Google Scholar 

  60. P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. Den Hertog, J.P.J.M. Van Der Herden, A. Meijerink, Quantum cutting by cooperative energy transfer in YbxY1xPO4:Tb3+. Phys. Rev. B 71, 1–11 (2005)

    Article  Google Scholar 

  61. S. Wang, J. Qiu, Q. Wang, D. Zhou, Z. Yang, Energy transfer and visible–infrared quantum cutting photoluminescence modification in Tm-Yb codoped YPO4 inverse opal photonic crystals. Appl. Opt. 54, 6827–6831 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

O.A. acknowledges the Moroccan National Center for Scientific and Technical Research for excellence scholarship number 1USMS2018. M.Y.M. acknowledges the Laboratory Holding Division of CNESTEN (Morocco) for the experimental support. NIMP authors acknowledge the financial support from the Romanian Ministry of Research and Innovation in the framework of Core Program PN19-03 (Contract No. 21 N/08.02.2019) and POC-G project MAT2IT (Contract 54/2016, SMIS code 105726, Intermediary Body-Romanian Ministry of Research and Innovation). Mr. D. Avram from the National Institute for Laser, Plasma, and Radiation Physics (Romania) is gratefully acknowledged for the PL analysis in the NIR range.

Author information

Authors and Affiliations

Authors

Contributions

OAM contributed to methodology, data analysis, investigation, writing and preparation of the original draft, and writing, reviewing, and editing of the manuscript. LO, MYM, FN, and MS contributed to funding acquisition, project administration, data acquisition, investigation, supervision, methodology, corrections, and suggestions, and writing, reviewing, and editing of the manuscript. MT, MF, and SN contributed to data acquisition, investigation, corrections, and suggestions. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to L. Oufni or M. Secu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AitMellal, O., Oufni, L., Messous, M.Y. et al. Structural properties and near-infrared light from Ce3+/Nd3+-co-doped LaPO4 nanophosphors for solar cell applications. J Mater Sci: Mater Electron 33, 4197–4210 (2022). https://doi.org/10.1007/s10854-021-07615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07615-6

Navigation