Skip to main content
Log in

Photocatalytic degradation of the antibiotic ciprofloxacin in the aqueous solution using Mn/Co oxide photocatalyst

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Active pharmaceutical ingredients (APIs), despite their beneficial effects on human or animal health, have emerged as an environmental unwanted material due to their excessive use and subsequent release into the aquatic environment causing deleterious effects in organisms. Effective strategies for the removal of APIs are therefore the need of the day as the existing strategies are not efficient. The application of photochemical treatments, namely heterogeneous photocatalysis for the removal of the APIs in water is one of the effective methods. In this respect, we have prepared manganese oxide/cobalt oxide photocatalyst which has emerged as effective treatment methodology for pharmaceutical removal. The photocatalyst was prepared though sol–gel method and then characterized using field emission scanning electron microscopy, X-ray diffraction, Brunner–Emmitt–Teller analysis, thermogravimetric analysis and diffuse reflectance spectroscopy. The photocatalyst was used to degrade the antibiotic (ciprofloxacin). Both photolysis of antibiotic without any catalyst under sun light and photocatalysis in the presence of catalyst were studied and compared. Catalysis was performed under different experimental conditions such as pH, antibiotic concentration, and catalyst dosage and were optimized. The photocatalysis (k = 7.9 × 10−2 min−1) was found to greater than the photolysis (k = 3.8 × 10−3 min−1) indicating the catalytic activity of the prepared photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. T. Munawar, S. Yasmeen, F. Hussain, K. Mahmood, A. Hussain, M. Asghar, F. Iqbal, Synthesis of novel heterostructured ZnO–CdO–CuO nanocomposite: characterization and enhanced sunlight driven photocatalytic activity. Mater. Chem. Phys. 249, 122983 (2020)

    Article  CAS  Google Scholar 

  2. S. Hussain, M. Kamran, S.A. Khan, K. Shaheen, Z. Shah, H. Suo, Q. Khan, A.B. Shah, W.U. Rehman, Y.O. Al-Ghamdi, Adsorption, kinetics and thermodynamics studies of methyl orange dye sequestration through chitosan composites films. Int. J. Biol. Macromol. 168, 383–394 (2021)

    Article  CAS  Google Scholar 

  3. M. Klavarioti, D. Mantzavinos, D. Kassinos, Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35, 402–417 (2009)

    Article  CAS  Google Scholar 

  4. D. Balarak, F.K. Mostafapour, A. Joghataei, Experimental and kinetic studies on penicillin G adsorption by Lemna minor. J. Pharm. Res. Int. (2016). https://doi.org/10.9734/BJPR/2016/22820

    Article  Google Scholar 

  5. F. Bahrami Asl, M. Kermani, M. Farzadkia, A. Esrafili, S. Salahshour Arian, D. Zeynalzadeh, Removal of metronidazole from aqueous solution using ozonation process. J. Mazandaran Univ. Med. Sci. 24, 131–140 (2015)

    Google Scholar 

  6. B. Amraei, R. Rezaei Kalantary, A. Jonidi Jafari, M. Gholami, Efficiency of CuFe2O4 bimetallic in removing amoxicillin from aqueous solutions. J. Mazandaran Univ. Med. Sci. 27, 259–275 (2017)

    Google Scholar 

  7. T. Chankhanittha, V. Somaudon, J. Watcharakitti, V. Piyavarakorn, S. Nanan, Performance of solvothermally grown Bi2MoO6 photocatalyst toward degradation of organic azo dyes and fluoroquinolone antibiotics. Mater. Lett. 258, 126764 (2020)

    Article  CAS  Google Scholar 

  8. T. Senasu, T. Narenuch, K. Wannakam, T. Chankhanittha, S. Nanan, Solvothermally grown BiOCl catalyst for photodegradation of cationic dye and fluoroquinolone-based antibiotics. J. Mater. Sci. Mater. Electron. 31, 9685–9694 (2020)

    Article  CAS  Google Scholar 

  9. E.M. Golet, A.C. Alder, W. Giger, Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environ. Sci. Technol. 36, 3645–3651 (2002)

    Article  CAS  Google Scholar 

  10. A. Speltini, M. Sturini, F. Maraschi, A. Profumo, Fluoroquinolone antibiotics in environmental waters: sample preparation and determination. J. Sep. Sci. 33, 1115–1131 (2010)

    CAS  Google Scholar 

  11. L.J. Githinji, M.K. Musey, R.O. Ankumah, Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Pollut. 219, 191–201 (2011)

    Article  CAS  Google Scholar 

  12. P.C. Sharma, A. Jain, S. Jain, R. Pahwa, M.S. Yar, Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J. Enzyme Inhib. Med. Chem. 25, 577–589 (2010)

    Article  CAS  Google Scholar 

  13. D. Kong, B. Liang, H. Yun, H. Cheng, J. Ma, M. Cui, A. Wang, N. Ren, Cathodic degradation of antibiotics: characterization and pathway analysis. Water Res. 72, 281–292 (2015)

    Article  CAS  Google Scholar 

  14. T. Chankhanittha, S. Nanan, Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction. J. Colloid Interface Sci. 582, 412–427 (2021)

    Article  CAS  Google Scholar 

  15. Z. Sheikh, M. Amin, N. Khan, M.N. Khan, S.K. Sami, S.B. Khan, I. Hafeez, S.A. Khan, E.M. Bakhsh, C.K. Cheng, Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Chemosphere 279, 130545 (2021)

    Article  CAS  Google Scholar 

  16. S. Ahmed, T. Kamal, S.A. Khan, Y. Anwar, T. Saeed, M. Muhammad Asiri, A. Bahadar, Khan, Assessment of anti-bacterial Ni–Al/chitosan composite spheres for adsorption assisted photo-degradation of organic pollutants. Curr. Nanosci. 12, 569–575 (2016)

    Article  CAS  Google Scholar 

  17. S.A. Khan, S.B. Khan, T. Kamal, M. Yasir, A.M. Asiri, Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes. Int. J. Biol. Macromol. 91, 744–751 (2016)

    Article  CAS  Google Scholar 

  18. G. Lofrano, G. Libralato, R. Adinolfi, A. Siciliano, P. Iannece, M. Guida, M. Giugni, A.V. Ghirardini, M. Carotenuto, Photocatalytic degradation of the antibiotic chloramphenicol and effluent toxicity effects. Ecotoxicol. Environ. Saf. 123, 65–71 (2016)

    Article  CAS  Google Scholar 

  19. P. Manjula, R. Boppella, S.V. Manorama, A facile and green approach for the controlled synthesis of porous SnO2 nanospheres: application as an efficient photocatalyst and an excellent gas sensing material. ACS Appl. Mater. Interfaces 4, 6252–6260 (2012)

    Article  CAS  Google Scholar 

  20. S. Rau, B. Schäfer, D. Gleich, E. Anders, M. Rudolph, M. Friedrich, H. Görls, W. Henry, J.G. Vos, A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane. Angew. Chem. Int. Ed. 45, 6215–6218 (2006)

    Article  CAS  Google Scholar 

  21. Y. He, Y. Wang, L. Zhang, B. Teng, M. Fan, High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Appl. Catal. B 168, 1–8 (2015)

    Google Scholar 

  22. X. Yue, R. Zhang, H. Wang, F. Zhang, Sorption and decomposition of crude oil using exfoliated graphite/ZnO composites. J. Phys. Chem. Solids 70, 1391–1394 (2009)

    Article  CAS  Google Scholar 

  23. S.A. Khan, S.B. Khan, A.M. Asiri, I. Ahmad, Zirconia-based catalyst for the one-pot synthesis of coumarin through Pechmann reaction. Nanoscale Res. Lett. 11, 1–9 (2016)

    Article  CAS  Google Scholar 

  24. S.A. Khan, T. Arshad, M. Faisal, Z. Shah, K. Shaheen, H. Suo, A.M. Asiri, K. Akhtar, S.B. Khan, Al–Sr metal oxides and Al–Cd layered double hydroxides for the removal of Acridine orange dye in visible light exposure. J. Mater. Sci. Mater. Electron. 30, 15299–15312 (2019)

    Article  CAS  Google Scholar 

  25. K. Shaheen, H. Suo, T. Arshad, Z. Shah, S.A. Khan, S.B. Khan, M.N. Khan, M. Liu, L. Ma, J. Cui, Metal oxides nanomaterials for the photocatalytic mineralization of toxic water wastes under solar light illumination. J. Water Process Eng. 34, 101138 (2020)

    Article  Google Scholar 

  26. T. Munawar, F. Iqbal, S. Yasmeen, K. Mahmood, A. Hussain, Multi metal oxide NiO–CdO–ZnO nanocomposite–synthesis, structural, optical, electrical properties and enhanced sunlight driven photocatalytic activity. Ceram. Int. 46, 2421–2437 (2020)

    Article  CAS  Google Scholar 

  27. T. Munawar, S. Yasmeen, M. Hasan, K. Mahmood, A. Hussain, A. Ali, M. Arshad, F. Iqbal, Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies. Ceram. Int. 46, 11101–11114 (2020)

    Article  CAS  Google Scholar 

  28. J.P. Jeon, D.H. Kweon, B.J. Jang, M.J. Ju, J.B. Baek, Enhancing the photocatalytic activity of TiO2 catalysts. Adv. Sustain. Syst. 4, 2000197 (2020)

    Article  CAS  Google Scholar 

  29. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128–146 (2015)

    Article  CAS  Google Scholar 

  30. F. Mukhtar, T. Munawar, M.S. Nadeem, S. Batool, M. Hasan, M. Riaz, F. Iqbal, Highly efficient tri-phase TiO2–Y2O3–V2O5 nanocomposite: structural, optical, photocatalyst, and antibacterial studies. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-021-00430-9

    Article  Google Scholar 

  31. F. Mukhtar, T. Munawar, M.S. Nadeem, M.N. ur Rehman, M. Riaz, F. Iqbal, Dual S-scheme heterojunction ZnO–V2O5–WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity. Mater. Chem. Phys. 263, 124372 (2021)

    Article  CAS  Google Scholar 

  32. S. Vijayalakshmi, E. Kumar, P.S. Venkatesh, A. Raja, Preparation of zirconium oxide with polyaniline nanocatalyst for the decomposition of pharmaceutical industrial wastewater. Ionics 26, 1507–1513 (2020)

    Article  CAS  Google Scholar 

  33. J. Li, L. Liu, Q. Liang, M. Zhou, C. Yao, S. Xu, Z. Li, Core-shell ZIF-8@ MIL-68 (In) derived ZnO nanoparticles-embedded In2O3 hollow tubular with oxygen vacancy for photocatalytic degradation of antibiotic pollutant. J. Hazard. Mater. 414, 125395 (2021)

    Article  CAS  Google Scholar 

  34. A. Ren, C. Liu, Y. Hong, W. Shi, S. Lin, P. Li, Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures. Chem. Eng. J. 258, 301–308 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Deanship of Scientific Research (DSR), at King Abdulaziz University, Jeddah, Saudi Arabia has funded this project under Grant No. (KEP- 31-130-42).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AA, WUR, ZUR, SAK, ZS, KS, HS, MNQ, SBK, EMB and KA. The first draft of the manuscript was written by AA, ZUR, and SAK and all authors commented on previous versions of the manuscript. The entire supervision was did by SAK. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shahid Ali Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, A., Rahman, W.U., Rahman, Z.U. et al. Photocatalytic degradation of the antibiotic ciprofloxacin in the aqueous solution using Mn/Co oxide photocatalyst. J Mater Sci: Mater Electron 33, 4255–4267 (2022). https://doi.org/10.1007/s10854-021-07619-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07619-2

Navigation