Skip to main content

Advertisement

Log in

Analysis of eco-friendly tin-halide Cs2SnI6-based perovskite solar cell with all-inorganic charge selective layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2022

This article has been updated

Abstract

In this research work, eco-friendly and tin-halide Cs2SnI6-based perovskite coupled with the various all-inorganic charge collective layers like ZnO, TiO2, CdS, GO; CuI, Cu2O, and MoO3, via one-dimensional solar cell capacitance simulator (SCAPS 1D). Among the various proposed electron and hole transport layers (ETLs and HTLs), Cs2SnI6, GO, and Cu2O are the most adequate materials for the efficient and stable perovskite solar cells (PSCs). In the present study, we have proposed a novel architecture FTO/GO/Cs2SnI6/Cu2O/Au with outstanding device performances. Also, we have analyzed and validated the impact of various factors like thickness of absorber, ETL, and HTL layer; defect density, and working temperature on the performances of the solar cells. The novel configuration possessed excellent photovoltaic outputs with a power conversion efficiency of 25.12%. The other obtained performances for the proposed novel configuration were 27.15 mA/cm2, 1.3 V, and 68.78% for the short-circuit current (Jsc), open-circuit voltage (Voc), and fill factor (FF). The effect of series resistance is also reported in this theoretical work. The proposed material is in very good agreement with the existing experimental work and is apt for future lead-free and tin-halide-based PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All relevant data and materials have been already mentioned in the manuscript.

Change history

References

  1. Y. Dae, S. Jeong, H.I. Hui, S.K. Nam, G. P., J. Phys. Chem. C (2014). https://doi.org/10.1021/jp412407j

    Article  Google Scholar 

  2. Z. Zonglong, B. Yang, L. Xiao, C.C. Chu, Y. Shihe, K. Alex, Y. Jen, Adv. Mater. (2016). https://doi.org/10.1002/adma.201600619

    Article  Google Scholar 

  3. L. Jie, G. Fei, W. Haoxu, L. Juan, J. Jiexuan, W. Xin, G. Rongrong, Y. Zhou, L. Shengzhong, Solar Energy Mater. Solar Cells (2018). https://doi.org/10.1016/j.solmat.2018.07.009

    Article  Google Scholar 

  4. P. Yongyi, C. Yudiao, W. Chunhua, Z. Chujun, X. Huayan, H. Keqing, T. Sichao, H. Xiaotao, Y. Junliang, Organic Electron. (2018). https://doi.org/10.1016/j.orgel.2018.04.020

    Article  Google Scholar 

  5. Y. Haiwen, Z. Yuanyuan, D. Jialong, W. Yudi, Y. Xiya, T. Qunwei, J. Mater. Chem. A (2018). https://doi.org/10.1039/C8TA08900K

    Article  Google Scholar 

  6. R. Yassine, E.Z. Hamid, K. Samrana, A. Shahzada, J. Energy Chem. (2021). https://doi.org/10.1016/j.jechem.2020.06.030

    Article  Google Scholar 

  7. N. Riming, R.S. Ranadeep, H.R. Sathy, B. Murali, S. Sang, Energy Environ. Sci. (2020). https://doi.org/10.1039/DoEE01153C

    Article  Google Scholar 

  8. R. Yaoguang, H. Yue, M. Anyi, T. Hairen, I.S. Makhsud, I.S. Sang, D.M. Michael, H.S. Edward, H. Hongwei, Science (2018). https://doi.org/10.1126/science.aat8235

    Article  Google Scholar 

  9. B. Lee, C.C. Stoumpos, N. Zhou, F. Hao, C. Malliakas, C.Y. Yeh, T.J. Marks, M.G. Kanatzidis, R.P. Chang, J. Am. Chem. Soc. 57, 147–168 (2014)

    Google Scholar 

  10. G. Xing, M.H. Kumar, W.K. Chong, X. Liu, Y. Cai, H. Ding, M. Asta, M. Gratzel, S. Mhaisalkar, N. Mathews, Adv. Mater 28(37), 8191–8196 (2016)

    Article  CAS  Google Scholar 

  11. A. Kaltzoglou, M. Antoniadou, A.G. Kontos, C.C. Stoumpos, D. Perganti, E. Siranidi, V. Raptis, K. Trohidou, V. Psycharis, M.G. Kanatzidis, J. Phys. Chem. C. 120, 11777–11785 (2016)

    Article  CAS  Google Scholar 

  12. X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu. Sol. Energy Mat. Sol. C. 426, 188–196 (2017)

    Google Scholar 

  13. Q. Xiaofeng, J. Yanan, Z. Hailiang, Q. Zhiwen, Y. Shuai, W. Ping, C. Bingqiang, Phy. Status Solidi RRL (2016). https://doi.org/10.1002/pssr.201600166

    Article  Google Scholar 

  14. Z. Jun, L. Jiajun, R. Ximing, W. Peijia, S.M. Maxim, H. Yang, Z. Jing, L. Quanlin, Z. Xiuwen, T. Jiang, X. Zhiguo, Adv Opt Mater 7, 1900276 (2019)

    Article  Google Scholar 

  15. Z. Hongdan, Z. Ludan, C. Jun, C. Long, L. Chuanqi, Y. Shuanglong, Curr. Comput.-Aided Drug Des. (2019). https://doi.org/10.3390/cryst9050258

    Article  Google Scholar 

  16. H. Pujiarti, P. Wulandari, R. Hidayat, J. Phys. Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1245/1/012066

    Article  Google Scholar 

  17. Y. Guan, H. Shengxuan, N. Jingjing, Q. Shan, W. Xiang, D. Hongrui, Solid State Commun 275, 68–72 (2018)

    Article  Google Scholar 

  18. Marc. Burgelman, Department of Electronics and Information System, University of Gent. SCAPS-1D.

  19. R. Priyanka, T. Sanjay, K. Ayush, Results Opt (2021). https://doi.org/10.11016/j.rio.2021.100083

    Article  Google Scholar 

  20. E. Kim. 47th IEEE Photovoltaic Specialists Conference (PVSC) (2020) Doi: https://doi.org/10.1109/PVSC45281.2020.9300498.

  21. A. Saif, J.M. Farihatun, K.K. Abdul, A.A. Mohammad, Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165765

    Article  Google Scholar 

  22. M. Masood, E.A. Norouzi, A.Y. Sonya, Mater. Res. Express (2021). https://doi.org/10.1088/2053-1591/abf080

    Article  Google Scholar 

  23. M. Abdur, R. Tarikul, and I. Global J. Mater. Sci. Eng. (2020).

  24. C. Kunal, G.C. Mahua, P. Samrat, Sol. Energy (2019). https://doi.org/10.1016/j.solener.2019.11.005

    Article  Google Scholar 

  25. T. Kai, L. Peng, W. Gang, L. Yan, X. Zongchang, L. Yixin, Solid-State Electron. (2016). https://doi.org/10.1016/j.sse.2016.09.012

    Article  Google Scholar 

  26. N.K. Nurul, M.Y. Army, Mater. Sci. (2013). https://doi.org/10.1109/CSUDET.2013.6670987

    Article  Google Scholar 

  27. L. Hao, T. Leiming, H. Feihong, S. Qiang, Z. Xiaojuan, H. Junbo, S. Yan, W. Mingkui, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b10773

    Article  Google Scholar 

  28. X. Dai, P. Koshy, C.C. Sorrell, J. Lim, J.S. Yun, Mater.-Based Issues (2020). https://doi.org/10.3390/en13236335

    Article  Google Scholar 

  29. M.C. Wu, S.H. Chan, K.M. Lee, S.H. Chen, M.H. Jao, Y.F. Chen, W.F. Su, J. Mater. Chem. A (2018). https://doi.org/10.1039/C8TA05291C

    Article  Google Scholar 

  30. N.A. Rai, N. Hina, L. Jing, Z.P.L. Xingqun, X. Bin, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.02.072

    Article  Google Scholar 

  31. P.K. Patel, Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-82817-w

    Article  Google Scholar 

  32. Y.M. Lee, I. Maeng, J. Park, M. Song, J.H. Yun, M.C. Jung, M. Nakamura, J. Solid State Chem. (2018). https://doi.org/10.3389/fenrg.2018.00128

    Article  Google Scholar 

  33. M.S. Usha, K.T. Geetha. Renew Energy Res (2017).

  34. H. Pujiarti, R. Hidayat, P. Wulandari, Key Eng. Mater. (2020). https://doi.org/10.4028/www.scientific.net/KEM.860.22

    Article  Google Scholar 

  35. H. Heriche, Z. Rouabah, N. Bouarissa, Int. J. Hydrogen Energy (2017). https://doi.org/10.1016/j.ijhydene.2017.02.099

    Article  Google Scholar 

  36. I.D. Sara, Int. Conf. Electr. Eng. Inform. (ICELTICs) (2017). https://doi.org/10.1109/ICELTICS.2017.8253257

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Marc Burgelman, Department of Electronics and Information System, University of Gent, for the development of the SCAPS software package and for allowing its use.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

AC and AO have conceived the work and wrote the manuscript. All authors participated in the simulation, application, and manuscript preparations. All authors have contributed to revising the work and approved it for publication.

Corresponding author

Correspondence to Asha Chauhan.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

The original online version of this article was revised due to wrong affiliation update.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Oudhia, A. & Shrivastav, A.K. Analysis of eco-friendly tin-halide Cs2SnI6-based perovskite solar cell with all-inorganic charge selective layers. J Mater Sci: Mater Electron 33, 1670–1685 (2022). https://doi.org/10.1007/s10854-022-07723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07723-x

Navigation