Skip to main content
Log in

A polyimide-based flexible monopole antenna

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A polyimide (PI)-based flexible monopole antenna fed by coplanar waveguide (CPW) was fabricated by self-assembly technology. The measured characteristics indicate that the antenna under the flat state has the resonant frequency is f = 2.32 GHz, and the impedance bandwidths (|S11|< − 10 dB) are 36.44% (2.02–2.92 GHz). The radiation characteristics of the flexible monopole antenna in bending and folding states along different directions (X- and Y-axis) are tested. Whether it is flat, bent or folded, the measured results meet the requirements of the antenna. The formed silver layers fabricated by self-assembly technology have good flexibility. The designed flexible monopole antenna is promised for integration within future flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this manuscript (and its Supplementary Information Files).

References

  1. J. Hu, in 2010 28th VLSI Test Symposium (IEEE, New York, 2010), p. 84. https://doi.org/10.1109/VTS.2010.5469608

  2. Q.H. Abbasi, M.U. Rehman, X. Yang, A. Alomainy, K. Qaraqe, E. Serpedin, IEEE Antennas Wirel. Propag. Lett. 12, 1606 (2013). https://doi.org/10.1109/APCAP.2015.7374451

    Article  Google Scholar 

  3. L. Liu, S. Zhu, R.J. Langley, Electron. Lett. 43, 140 (2007). https://doi.org/10.1049/el:20073643

    Article  Google Scholar 

  4. S. Ahmed, F.A. Tahir, A. Shamim, H.M. Cheema, IEEE Antennas Wirel. Propag. Lett. 14, 1802 (2015). https://doi.org/10.1109/LAWP.2015.2424681

    Article  Google Scholar 

  5. M. Tang, B. Zhou, R.W. Ziolkowski, IEEE Antennas Wirel. Propag. Lett. 15, 914 (2016). https://doi.org/10.1109/LAWP.2015.2480706

    Article  Google Scholar 

  6. X.Y. Cheng, J.Y. Wu, R. Blank, D.E. Senior, Y. Yoon, IEEE Antennas Wirel. Propag. Lett. 11, 1667 (2012). https://doi.org/10.1109/LAWP.2013.2238600

    Article  Google Scholar 

  7. C. Du, X. Li, S.S. Zhong, IEEE Access (2019). https://doi.org/10.1109/iWEM.2019.8887874

    Article  Google Scholar 

  8. X. Guo, Y. Hang, Z. Xie, C. Wu, L. Gao, C. Liu, Microw. Opt. Technol. Lett. 59, 204 (2017). https://doi.org/10.1002/mop.30261

    Article  Google Scholar 

  9. S.Y. Liu, C. Moncion, J.W. Zhang, L. Balachandar, D. Kwaku, J.J. Riera, J.L. Volakis, J. Chae, ACS Sens. 4, 3175 (2019). https://doi.org/10.1021/acssensors.9b01491

    Article  CAS  Google Scholar 

  10. F. Rodrigues, J.F. Ribeiro, P.A. Anacleto, A. Fouchard, O. David, P.M. Sarro, P.M. Mendes, J Neural Eng. (2019). https://doi.org/10.1088/1741-2552/ab4dbb

    Article  Google Scholar 

  11. T. Pan, L. Dai, S. Chen, Z. Yan, Y. Lin, IEEE Antennas Wirel. Propag. Lett. 18, 1789 (2019). https://doi.org/10.1109/LAWP.2019.2930008

    Article  Google Scholar 

  12. A. Chauraya, W.G. Whittow, J.C. Vardaxoglou, Y. Li, R. Torah, K. Yang, S. Beeby, J. Tudor, I.E.T. Microw, Antennas Propag. 7, 760 (2013). https://doi.org/10.1049/iet-map.2013.0076

    Article  Google Scholar 

  13. X. Guo, Y. Huang, W. Pan, W. Kan, L. Mao, Y. Zhang, Nanosci. Nanotechnol. Lett. 9, 1632 (2017). https://doi.org/10.1166/nnl.2017.2528

    Article  Google Scholar 

  14. R. Wu, X. Fang, IEEE Electron Device Lett. 40, 586 (2019). https://doi.org/10.1109/LED.2019.2899384

    Article  CAS  Google Scholar 

  15. B. Chen, M. Kruse, B. Xu, R. Tutika, W. Zheng, M.D. Bartlett, Y. Wu, J.C. Claussen, Nanoscale 11, 5222 (2019). https://doi.org/10.1039/c8nr09101c

    Article  CAS  Google Scholar 

  16. H.R. Khaleel, IEEE Trans. Compon. Packag. Manuf. Technol. 4, 1722 (2014). https://doi.org/10.1109/TCPMT.2014.2352254

    Article  Google Scholar 

  17. Z. Wu, D. Wu, S. Qi, T. Zhang, R. Jin, Thin Solid Films 493, 179 (2005). https://doi.org/10.1016/j.tsf.2005.07.286

    Article  CAS  Google Scholar 

  18. T. Yang, Y. Yu, L. Zhu, X. Wu, X.H. Wang, J. Zhang, Sens. Actuators B 208, 327 (2015). https://doi.org/10.1016/j.snb.2014.11.043

    Article  CAS  Google Scholar 

  19. Z. Wu, D. Wu, W.T. Yang, R. Jin, J. Mater. Chem. 16, 310 (2006). https://doi.org/10.1039/b509537a

    Article  CAS  Google Scholar 

  20. C. Lin, C. Chang, Y.T. Cheng, C.F. Jou, IEEE Antennas Wirel. Propag. Lett. 10, 1108 (2011). https://doi.org/10.1109/LAWP.2011.2170398

    Article  Google Scholar 

  21. H.K. Raad, H.M. Al-Rizzo, A.I. Abbosh, A.I. Hammoodi, Prog. Electromagn. Res. C 63, 153 (2016). https://doi.org/10.2528/PIERC16010707

    Article  Google Scholar 

  22. H. Liu, S. Zhu, P. Wen, X. Xiao, W. Che, X. Guan, IEEE Antennas Wirel. Propag. Lett. 13, 770 (2014). https://doi.org/10.1109/LAWP.2014.2317746

    Article  Google Scholar 

  23. S.M. Saeed, C.A. Balanis, C.R. Birtcher, IEEE Antennas Wirel. Propag. Lett. 15, 1979 (2016). https://doi.org/10.1109/LAWP.2016.2547338

    Article  Google Scholar 

Download references

Acknowledgements

Manuscript received XX, 2021. This work is supported in part by the Key Program of Jiangsu Provincial Department of Education (17KJA470007), the Project of Nantong Science and Technology (JC2019112), Shanghai Key Laboratory of Multidimensional Information Processing (2020PIP003) and the Fundamental Research Funds for the Central Universities (Corresponding author: Zhi-Liang Wang).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Z-LW guided the experiment. Numerical simulations, experimental measurements and analysis were performed by YL, D-YC, J-SG. YL wrote the manuscript.

Corresponding author

Correspondence to Zhi-Liang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Research data policy

Our manuscript supports the Type 3 Research Data Policy.

Ethical approval

We confirm that our manuscripts comply with ethical standards and we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, ZL., Cang, DY. et al. A polyimide-based flexible monopole antenna. J Mater Sci: Mater Electron 33, 1686–1702 (2022). https://doi.org/10.1007/s10854-022-07725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-07725-9

Navigation